Skip to main content

Precipitation determines the magnitude and direction of interannual responses of soil respiration to experimental warming

Abstract

Background and aims

Soil respiration (Rs) is expected to positively feedback to climate warming. The strength of this feedback is uncertain as numerous environmental factors, such as precipitation and soil moisture, can moderate the warming response of Rs.

Methods

We combined seven-year Rs measurements in a warming experiment in the Tibetan alpine grassland with a meta-analysis on grassland warming experiments globally to investigate how precipitation and soil moisture influences the warming response of Rs. We further analyzed the warming responses of heterotrophic (Rh) and autotrophic (Ra) components of Rs.

Results

Warming enhanced growing-season Rs in the wet years but decreased it in the dry years in the field experiment at the Tibetan grassland. Precipitation modulated the warming responses of growing-season Rs via Rh, but not Ra. Consistent with the field experiment, a positive relationship between precipitation and the warming response of growing-season Rs was also observed in the global-scale meta-analysis on grassland warming experiments.

Conclusions

Precipitation influences the warming effects on Rs and could result in variation in warming response of Rs across years and experimental systems. Empirical functions provided by this study could be used to reduce the uncertainty in predicting Rs in a warmer future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allison I, Bindoff N, Bindschadler R et al (2011) The Copenhagen Diagnosis: Updating the world on the latest climate science. Elsevier, Amsterdam

    Google Scholar 

  2. Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351. https://doi.org/10.1016/s1360-1385(03)00136-5

    CAS  Article  PubMed  Google Scholar 

  3. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R Package Version 1:1–23

    Google Scholar 

  4. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582. https://doi.org/10.1038/nature08930

    CAS  Article  PubMed  Google Scholar 

  5. Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang L, Machmuller MB, Mohan J, Panetta AM, Reich PB, Reinsch S, Wang X, Allison SD, Bamminger C, Bridgham S, Collins SL, de Dato G, Eddy WC, Enquist BJ, Estiarte M, Harte J, Henderson A, Johnson BR, Larsen KS, Luo Y, Marhan S, Melillo JM, Peñuelas J, Pfeifer-Meister L, Poll C, Rastetter E, Reinmann AB, Reynolds LL, Schmidt IK, Shaver GR, Strong AL, Suseela V, Tietema A (2016) Temperature response of soil respiration largely unaltered with experimental warming. Proc Natl Acad Sci 113:13797–13802. https://doi.org/10.1073/pnas.1605365113

    CAS  Article  PubMed  Google Scholar 

  6. Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916. https://doi.org/10.1093/aob/mcf105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Chen J, Luo Y, Xia J et al (2016) Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan plateau. Agric For Meteorol 220:21–29. https://doi.org/10.1016/j.agrformet.2016.01.010

    Article  Google Scholar 

  8. Chen J, Luo Y, García-Palacios P et al (2018) Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Glob Chang Biol 24:4816–4826. https://doi.org/10.1111/gcb.14394

    Article  PubMed  Google Scholar 

  9. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58. https://doi.org/10.1038/nclimate1633

    Article  Google Scholar 

  10. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    CAS  Article  PubMed  Google Scholar 

  11. Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907. https://doi.org/10.1016/j.soilbio.2008.07.020

    CAS  Article  Google Scholar 

  12. Garten CT Jr, Classen A, Norby R (2009) Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant Soil 319:85–94. https://doi.org/10.1007/s11104-008-9851-6

    CAS  Article  Google Scholar 

  13. Geng Y, Wang Y, Yang K, Wang S, Zeng H, Baumann F, Kuehn P, Scholten T, He JS (2012) Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS One 7:e34968. https://doi.org/10.1371/journal.pone.0034968

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48. https://doi.org/10.1029/2010RG000345

  15. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11:1092–1100. https://doi.org/10.1111/j.1461-0248.2008.01223.x

    Article  PubMed  Google Scholar 

  16. Hashimoto S, Carvalhais N, Ito A et al (2015) Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12:4121–4132. https://doi.org/10.5194/bg-12-4121-2015

    Article  Google Scholar 

  17. IPCC (2013) Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  18. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488. https://doi.org/10.1016/S1360-1385(00)01766-0

    CAS  Article  PubMed  Google Scholar 

  19. Jing X, Wang Y, Chung H, Mi Z, Wang S, Zeng H, He JS (2014) No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan plateau. Biogeochemistry 117:39–54. https://doi.org/10.1007/s10533-013-9844-2

    CAS  Article  Google Scholar 

  20. Kimball BA, Conley MM, Wang S et al (2008) Infrared heater arrays for warming ecosystem field plots. Glob Chang Biol 14:309–320. https://doi.org/10.1111/j.1365-2486.2007.01486.x

    Article  Google Scholar 

  21. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82:

  22. Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–3406. https://doi.org/10.1111/j.1365-2486.2010.02179.x

    Article  Google Scholar 

  23. Lin X, Zhang Z, Wang S et al (2011) Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agric For Meteorol 151:792–802. https://doi.org/10.1016/j.agrformet.2011.01.009

    Article  Google Scholar 

  24. Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X, Sanders NJ, Classen AT, Reich PB, He JS (2018) Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc Natl Acad Sci 115:4051–4056. https://doi.org/10.1073/pnas.1700299114

    CAS  Article  PubMed  Google Scholar 

  25. Liu L, Wang X, Lajeunesse MJ et al (2016) A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob Chang Biol 22:1394–1405. https://doi.org/10.1111/gcb.13156

    CAS  Article  PubMed  Google Scholar 

  26. Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195. https://doi.org/10.1111/j.1365-2486.2008.01728.x

    Article  Google Scholar 

  27. Luo C, Xu G, Chao Z et al (2010) Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Glob Chang Biol 16:1606–1617. https://doi.org/10.1111/j.1365-2486.2009.02026.x

    Article  Google Scholar 

  28. Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712. https://doi.org/10.1146/annurev.ecolsys.38.091206.095808

    Article  Google Scholar 

  29. Luo Y, Wan S, Hui D, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625. https://doi.org/10.1038/35098065

    CAS  Article  PubMed  Google Scholar 

  30. Luo Y, Sherry R, Zhou X, Wan S (2009) Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. GCB Bioenergy 1:62–74. https://doi.org/10.1111/j.1757-1707.2008.01005.x

    CAS  Article  Google Scholar 

  31. Ma Y, Yang Y, Han Z et al (2018) Comprehensive evaluation of ensemble multi-satellite precipitation dataset using the dynamic Bayesian model averaging scheme over the Tibetan plateau. J Hydrol 556:634–644. https://doi.org/10.1016/j.jhydrol.2017.11.050

    Article  Google Scholar 

  32. Ma Z, Liu H, Mi Z, Zhang Z, Wang Y, Xu W, Jiang L, He JS (2017) Climate warming reduces the temporal stability of plant community biomass production. Nat Commun 8:15378. https://doi.org/10.1038/ncomms15378

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329:838–840. https://doi.org/10.1126/science.1189587

    CAS  Article  PubMed  Google Scholar 

  34. Marvel K, Cook BI, Bonfils CJW, Durack PJ, Smerdon JE, Williams AP (2019) Twentieth-century hydroclimate changes consistent with human influence. Nature 569:59–65. https://doi.org/10.1038/s41586-019-1149-8

    CAS  Article  PubMed  Google Scholar 

  35. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176. https://doi.org/10.1126/science.1074153

    CAS  Article  PubMed  Google Scholar 

  36. Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci U S A 108:9508–9512. https://doi.org/10.1073/pnas.1018189108

    Article  PubMed  PubMed Central  Google Scholar 

  37. Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:101–105. https://doi.org/10.1126/science.aan2874

    CAS  Article  Google Scholar 

  38. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51. https://doi.org/10.1038/nature09364

    CAS  Article  PubMed  Google Scholar 

  39. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  40. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B 44:81–99. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  Google Scholar 

  41. Reynolds LL, Johnson BR, Pfeifer-Meister L, Bridgham SD (2015) Soil respiration response to climate change in Pacific northwest prairies is mediated by a regional Mediterranean climate gradient. Glob Chang Biol 21:487–500. https://doi.org/10.1111/gcb.12732

    Article  PubMed  Google Scholar 

  42. Schlesinger WH, Bernhardt ES (2013) Biogeochemistry: an analysis of global change. Academic press, Cambridge

    Google Scholar 

  43. Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR (2011) Effect of warming and drought on grassland microbial communities. ISME J 5:1692–1700. https://doi.org/10.1038/ismej.2011.32

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Shi Y, Wang Y, Ma Y et al (2014) Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences 11:2003–2016. https://doi.org/10.5194/bg-11-2003-2014

    Article  Google Scholar 

  45. Subke J-A, Bahn M (2010) On the ‘temperature sensitivity’ of soil respiration: can we use the immeasurable to predict the unknown? Soil Biol Biochem 42:1653–1656. https://doi.org/10.1016/j.soilbio.2010.05.026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Suseela V, Dukes JS (2013) The responses of soil and rhizosphere respiration to simulated climatic changes vary by season. Ecology 94:403–413. https://doi.org/10.1890/12-0150.1

    Article  PubMed  Google Scholar 

  47. Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Chang Biol 18:336–348. https://doi.org/10.1111/j.1365-2486.2011.02516.x

    Article  Google Scholar 

  48. Tan K, Ciais P, Piao S et al (2010) Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands. Glob Biogeochem Cycles 24:GB1013. https://doi.org/10.1029/2009GB003530

    CAS  Article  Google Scholar 

  49. Trenberth KE, Dai A, van der Schrier G et al (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22. https://doi.org/10.1038/nclimate2067

    Article  Google Scholar 

  50. Vargas R, Detto M, Baldocchi DD, Allen MF (2010) Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob Chang Biol 16:1589–1605. https://doi.org/10.1111/j.1365-2486.2009.02111.x

    Article  Google Scholar 

  51. Vicca S, Fivez L, Kockelbergh F et al (2009) No signs of thermal acclimation of heterotrophic respiration from peat soils exposed to different water levels. Soil Biol Biochem 41:2014–2016. https://doi.org/10.1016/j.soilbio.2009.07.007

    CAS  Article  Google Scholar 

  52. Wan S, Hui D, Wallace L, Luo Y (2005) Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob Biogeochem Cycles 19:GB2014. https://doi.org/10.1029/2004gb002315

    Article  Google Scholar 

  53. Wan S, Norby RJ, Ledford J, Weltzin JF (2007) Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob Chang Biol 13:2411–2424. https://doi.org/10.1111/j.1365-2486.2007.01433.x

    Article  Google Scholar 

  54. Wang S, Duan J, Xu G et al (2012) Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93:2365–2376. https://doi.org/10.1890/11-1408.1

    Article  PubMed  Google Scholar 

  55. Wang X, Liu L, Piao S et al (2014a) Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob Chang Biol 20:3229–3237. https://doi.org/10.1111/gcb.12620

    Article  PubMed  Google Scholar 

  56. Wang X, Pang G, Yang M (2018a) Precipitation over the Tibetan plateau during recent decades: a review based on observations and simulations. Int J Climatol 38:1116–1131. https://doi.org/10.1002/joc.5246

    Article  Google Scholar 

  57. Wang Y, Liu H, Chung H et al (2014b) Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer-monsoon-dominated Tibetan alpine grassland. Glob Biogeochem Cycles 28:1081–1095. https://doi.org/10.1002/2013gb004760

    CAS  Article  Google Scholar 

  58. Wang Y, Song C, Yu L et al (2018b) Convergence in temperature sensitivity of soil respiration: evidence from the Tibetan alpine grasslands. Soil Biol Biochem 122:50–59. https://doi.org/10.1016/j.soilbio.2018.04.005

    CAS  Article  Google Scholar 

  59. Wang Z, Hao X, Shan D et al (2011) Influence of increasing temperature and nitrogen input on greenhouse gas emissions from a desert steppe soil in Inner Mongolia. Soil Sci Plant Nutr 57:508–518. https://doi.org/10.1080/00380768.2011.591283

    CAS  Article  Google Scholar 

  60. Xia J, Han Y, Zhang Z, Wan S (2009) Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences 6:1361–1370. https://doi.org/10.5194/bg-6-1361-2009

    CAS  Article  Google Scholar 

  61. Xu X, Shi Z, Li D et al (2015) Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob Chang Biol 21:3846–3853. https://doi.org/10.1111/gcb.12940

    Article  PubMed  Google Scholar 

  62. You Q, Kang S, Pepin N et al (2010) Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan plateau from a homogenized dataset. Glob Planet Chang 72:11–24. https://doi.org/10.1016/j.gloplacha.2010.04.003

    Article  Google Scholar 

  63. Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, del Giorgio P, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012) Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487:472–476. https://doi.org/10.1038/nature11205

    CAS  Article  PubMed  Google Scholar 

  64. Zhang G, Zhang Y, Dong J, Xiao X (2013) Green-up dates in the Tibetan plateau have continuously advanced from 1982 to 2011. Proc Natl Acad Sci U S A 110:171–176. https://doi.org/10.1073/pnas.1210423110

    Article  Google Scholar 

  65. Zhao X-Q, Zhou X-M (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio 28:642–647

    Google Scholar 

  66. Zhou J, Xue K, Xie J et al (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Chang 2:106–110. https://doi.org/10.1038/nclimate1331

    CAS  Article  Google Scholar 

  67. Zhou X, Wan S, Luo Y (2007) Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Glob Chang Biol 13:761–775. https://doi.org/10.1111/j.1365-2486.2007.01333.x

    Article  Google Scholar 

  68. Zhuang Q, He J, Lu Y et al (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob Ecol Biogeogr 19:649–662. https://doi.org/10.1111/j.1466-8238.2010.00559.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Hao Wang, Yan Geng, Zhaorong Mi and Li Lin for their constructive comments. The authors also thank many workers of the Haibei Alpine Grassland Ecosystem Research Station of the Chinese Academy of Sciences for helping maintain our experiment. This study was supported by the National Key Research and Development Program of China (2016YFC0500602) and the National Natural Science Foundation of China (31630009, 31971434, 31600385 and 31670454).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-Sheng He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Hans Lambers.

Electronic supplementary material

ESM 1

(CSV 635 kb)

ESM 2

(CSV 4 kb)

ESM 3

(DOCX 972 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Song, C., Liu, H. et al. Precipitation determines the magnitude and direction of interannual responses of soil respiration to experimental warming. Plant Soil 458, 75–91 (2021). https://doi.org/10.1007/s11104-020-04438-y

Download citation

Keywords

  • Climate changes
  • Heterotrophic respiration
  • Autotrophic respiration
  • Tibetan plateau
  • Grassland ecosystems
  • Climate-carbon model