Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates

  • Jiaxing Lv
  • Yan DongEmail author
  • Kun DongEmail author
  • Qian Zhao
  • Zhixian Yang
  • Ling Chen
Regular Article



The causal agent of Fusarium wilt in faba bean is Fusarium oxysporum f. sp. fabae (FOF), which significantly reduces the yield in continuous cropping systems. We aimed to evaluate the role of wheat in alleviating Fusarium wilt in faba bean.


We assessed the effect of wheat on the occurrence of Fusarium wilt in faba bean and analyzed the differences in the root exudates produced by faba bean in monocropping and intercropping systems before and after infection by FOF.


Treatment with FOF increased the incidence and disease index of Fusarium wilt and significantly increased the number of rhizosphere pathogens. Phenolic acids, organic acids, amino acids and sugars exuded from the roots of faba bean increased by 39.1%, 329.0%, 921.7% and 1195.7%, respectively, while intercropping reduced them by 28.04%, 55.69%, 79.10% and 78.75%, respectively. The rhizosphere pathogens of faba bean decreased significantly following intercropping, and the incidence of Fusarium wilt dropped to tolerable levels.


This study suggests that the inoculation with FOF stimulated the exudation of phenolic acids, organic acids, amino acids and sugars from faba bean roots. These compounds were closely related to the changes in the disease resistance of faba bean and could also be used as nutrients to promote pathogen proliferation. After intercropping with wheat, the exudates of faba bean decreased significantly, which may imply that the faba bean recovered from stress, reduced the amount of nutrients needed for pathogen growth, limited the proliferation of pathogens and contributed to the alleviation of Fusarium wilt.


Intercropping Fusarium wilt Faba bean Root exudates 



This work was supported by the Natural Science Foundation of China (31860596, 31560586).


  1. Boudreau MA (2013) Diseases in intercropping systems. Annu Rev Phytopathol 51:499–519CrossRefGoogle Scholar
  2. Chen Y, Zhang F, Tang L, Zheng Y, Li Y, Christie P, Li L (2007) Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant Soil 291(1–2):1–13CrossRefGoogle Scholar
  3. Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of Δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16(12):3413–3425CrossRefGoogle Scholar
  4. Dong Y, Tang L, Zheng Y, W. L. F. (2010) Effects of N application on rhizosphere microflora and fusarium wilt occurrence of intercropped faba bean. Acta Ecol Sin 30(7):1797–1805Google Scholar
  5. Duc G (1997) Faba bean (Vicia faba L.). Field Crop Res 53(1–3):99–109CrossRefGoogle Scholar
  6. Emeran AA, Sillero JC, Fernández-Aparicio M, Rubiales D (2011) Chemical control of faba bean rust (Uromyces viciae-fabae). Crop Prot 30(7):907–912CrossRefGoogle Scholar
  7. Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant-Microbe Interact 17(4):343–350CrossRefGoogle Scholar
  8. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92(4):696–717CrossRefGoogle Scholar
  9. Gao X, Wu M, Xu R, Wang X, Pan R, Kim HJ, Liao H (2014) Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One 9(5):e95031CrossRefGoogle Scholar
  10. Hao WY, Ren LX, Ran W, Shen QR (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil 336:485–497CrossRefGoogle Scholar
  11. Haudecoeur E, Planamente S, Cirou A, Tannieres M, Shelp BJ, Morera S, Faure D (2009) Proline antagonizes GABA-induced quenching of quorum-sensing in agrobacterium tumefaciens. Proc Natl Acad Sci 106(34):14587–14592CrossRefGoogle Scholar
  12. Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev Plant Prot Res 8:114–124Google Scholar
  13. Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse US (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185(2):577–588CrossRefGoogle Scholar
  14. Li X, De Boer W, Zhang YN, Ding C, Zhang T, Wang X (2018) Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biol Biochem 116:120–130CrossRefGoogle Scholar
  15. Ling N, Raza W, Ma J, Huang Q, Shen Q (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47(6):374–379CrossRefGoogle Scholar
  16. Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q (2013) Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8(5):e63383CrossRefGoogle Scholar
  17. Liu, X. Y., Jin, J. Y., He, P., Liu, H. L., & Li, W. J. (2007). Preliminary study on the relation between potassium chloride suppressing corn stalk rot and soil microorganism characteristics. Plant Nutrition and Fertilizer Science, 2Google Scholar
  18. Lv H, Cao H, Nawaz MA, Sohail H, Huang Y, Cheng F, Kong Q, Bie Z (2018) Wheat intercropping enhances the resistance of watermelon to Fusarium wilt. Front Plant Sci 9Google Scholar
  19. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368CrossRefGoogle Scholar
  20. Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M (2009) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137(1):72–85CrossRefGoogle Scholar
  21. Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22(4):368–374CrossRefGoogle Scholar
  22. Momma N, Yamamoto K, Simandi P, Shishido M (2006) Role of organic acids in the mechanisms of biological soil disinfestation (BSD). J Gen Plant Pathol 72(4):247–252CrossRefGoogle Scholar
  23. Peng M, Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82(6):696–699CrossRefGoogle Scholar
  24. Ren L, Su S, Yang X, Xu Y, Huang Q, Shen Q (2008) Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol Biochem 40(3):834–844CrossRefGoogle Scholar
  25. Ren L, Zhang N, Wu P, Huo H, Xu G, Wu G (2015) Arbuscular mycorrhizal colonization alleviates Fusarium wilt in watermelon and modulates the composition of root exudates. Plant Growth Regul 77(1):77–85CrossRefGoogle Scholar
  26. Ren L, Huo H, Zhang F, Hao W, Xiao L, Dong C, Xu G (2016) The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense. Plant Signal Behav 11(6):e1187357CrossRefGoogle Scholar
  27. Stoddard FL, Nicholas AH, Rubiales D, Thomas J, Villegas-Fernández AM (2010) Integrated pest management in faba bean. Field Crop Res 115(3):308–318CrossRefGoogle Scholar
  28. Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik N, Schmelzer E, Koncz C, Koncz C (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53(1):11–28CrossRefGoogle Scholar
  29. Tan S, Yang C, Mei X, Shen S, Raza W, Shen Q, Xu Y (2013) The effect of organic acids from tomato root exudates on rhizosphere colonization of bacillus amyloliquefaciens T-5. Appl Soil Ecol 64:15–22CrossRefGoogle Scholar
  30. Tian G, Bi Y, Sun Z, Zhang L (2015) Phenolic acids in the plow layer soil of strawberry fields and their effects on the occurrence of strawberry anthracnose. Eur J Plant Pathol 143(3):581–594CrossRefGoogle Scholar
  31. Wang J, Liu H, Ren G (2014) Near-infrared spectroscopy (NIRS) evaluation and regional analysis of Chinese faba bean (Vicia faba L.). Crop J 2(1):28–37CrossRefGoogle Scholar
  32. Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc London, Ser B 355(1402):1517–1529CrossRefGoogle Scholar
  33. Wolfe MS (2000) Crop strength through diversity. Nature 406(6797):681–682CrossRefGoogle Scholar
  34. Wu HS, Raza W, Fan JQ, Sun YG, Bao W, Liu DY, Huang QW, Mao ZS, Shen QR, Miao WG (2008) Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f sp niveum. Chemosphere 74(1):45–50CrossRefGoogle Scholar
  35. Wu HS, Wang Y, Zhang CY, Gu M, Liu YX, Chen G, Wang JH, Tang Z, Mao ZH, Shen QR (2009) Physiological and biochemical responses of in vitro Fusarium oxysporum f. sp. niveum to benzoic acid. Folia Microbiol 54(2):115–122CrossRefGoogle Scholar
  36. Wu K, Yuan S, Xun G, Shi W, Pan B, Guan H, Shen B, Shen Q (2015) Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index. Eur J Plant Pathol 141(4):667–677CrossRefGoogle Scholar
  37. Xie X, Weiss DJ, Weng B, Liu J, Lu H, Yan C (2013) The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S., L.) Yong) roots. Environ Sci Pollut Res 20(2):997–1008CrossRefGoogle Scholar
  38. Xu W, Liu D, Wu F, Liu S (2015) Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. Eur J Plant Pathol 141(1):209–216CrossRefGoogle Scholar
  39. Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166(15):1694–1699CrossRefGoogle Scholar
  40. Yang M, Zhang Y, Qi L, Mei X, Liao J, Ding X, Deng W, Fan L, He X, Vivanco J, Li C, Zhu Y, Zhu S (2014) Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. PLoS One 9(12):e115052CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Resources And EnvironmentYunnan Agricultural UniversityKunmingChina
  2. 2.College Of Animal Science And TechnologyYunnan Agricultural UniversityKunmingChina
  3. 3.LibraryYunnan UniversityKunmingChina
  4. 4.College Of RongzhiChongqing Technology And Business UniversityChongqingChina

Personalised recommendations