Arbuscular mycorrhiza contributes to the control of phosphorus loss in paddy fields

Abstract

Aims

Phosphorus (P) loss from paddy fields is a significant issue in sustainable rice production by threatening water environments. We aimed to examine the suitability of mycorrhiza-defective rice (non-mycorrhizal) and its mycorrhizal progenitor to evaluate P loss control via arbuscular mycorrhizal (AM) fungi. We also aimed to investigate the AM effect on P loss via runoff and leaching.

Methods

We grew the two rice lines in microcosms with and without AM fungi, measured P loss via runoff and leaching before and after nitrogen–phosphorus–potassium fertilization, and quantified plant P content and soil P concentration after the final harvest.

Results

Mycorrhizal and non-mycorrhizal rice pair systems in the absence of AM fungi had similar plant, soil, runoff, and leachate P contents (except PO43−). In the presence of AM fungi, the concentrations of all P forms in runoff water and leachate in mycorrhizal rice were lower than those in nonmycorrhizal rice regardless of their solubility in water and availability to plants. The cumulative P loss from mycorrhizal systems was 10% less than that from their nonmycorrhizal counterparts.

Conclusions

This mycorrhizal/non-mycorrhizal rice pair is an efficient experimental tool for research on the control of P loss from paddy fields with AM fungi. AM colonization contributes to the sustainability of rice production by decreasing P loss from paddy fields.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. An ZQ, Hendrix JW, Hershman DE, Ferriss RS, Henson GT (1993) The influence of crop-rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza 3:171–182. https://doi.org/10.1007/bf00203611

    Article  Google Scholar 

  2. Asghari HR, Cavagnaro TR (2011) Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct Plant Biol 38:219–226. https://doi.org/10.1071/fp10180

    Article  Google Scholar 

  3. Asghari HR, Cavagnaro TR (2012) Arbuscular mycorrhizas reduce nitrogen loss via leaching. PLoS One 7(1):e29825. https://doi.org/10.1371/journal.pone.0029825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Asghari HR, Cavagnaro TR (2014) Mycorrhizas effects on nutrient interception in two riparian grass species. Eurasian J Soil Sci 3:274–285. https://doi.org/10.18393/ejss.10069

    Article  Google Scholar 

  5. Asghari HR, Chittleborough DJ, Smith FA, Smith SE (2005) Influence of arbuscular mycorrhizal (AM) symbiosis on phosphorus leaching through soil cores. Plant Soil 275:181–193. https://doi.org/10.1007/s11104-005-1328-2

    Article  CAS  Google Scholar 

  6. Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957. https://doi.org/10.1104/Pp.124.3.949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bender SF, van der Heijden MGA (2015) Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J Appl Ecol 52:228–239. https://doi.org/10.1111/1365-2664.12351

    Article  CAS  Google Scholar 

  8. Bender SF, Conen F, Van der Heijden MGA (2015) Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol Biochem 80:283–292. https://doi.org/10.1016/j.soilbio.2014.10.016

    Article  CAS  Google Scholar 

  9. Bitterlich M, Sandmann M, Graefe J (2018) Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Front Plant Sci 9:1–15. https://doi.org/10.3389/fpls.2018.00154

    Article  Google Scholar 

  10. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498. https://doi.org/10.1016/j.tplants.2008.07.001

    Article  PubMed  CAS  Google Scholar 

  11. Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234. https://doi.org/10.1016/j.scitotenv.2016.05.178

    Article  PubMed  CAS  Google Scholar 

  12. Bowles TM, Jackson LE, Loeher M, Cavagnaro TR (2017) Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J Appl Ecol 54:1785–1793. https://doi.org/10.1111/1365-2664.12815

    Article  Google Scholar 

  13. Cavagnaro TR, Barrios-Masias FH, Jackson LE (2012) Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant Soil 353:181–194

    Article  CAS  Google Scholar 

  14. Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20:283–290. https://doi.org/10.1016/j.tplants.2015.03.004

    Article  PubMed  CAS  Google Scholar 

  15. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19:305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  16. Corkidi L, Merhaut DJ, Allen EB, Downer J, Bohn J, Evans M (2011) Effects of mycorrhizal colonization on nitrogen and phosphorus leaching from nursery containers. Hortscience 46:1472–1479. https://doi.org/10.1007/s00122-011-1663-z

    Article  CAS  Google Scholar 

  17. Higo M, Isobe K, Kang DJ, Ujiie K, Drijber RA, Ishii R (2010) Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod Sci 13:74–79. https://doi.org/10.1626/Pps.13.74

    Article  Google Scholar 

  18. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299. https://doi.org/10.1038/35095041

    Article  PubMed  CAS  Google Scholar 

  19. Jiang Y et al (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172. https://doi.org/10.1126/science.aam9970

    Article  PubMed  CAS  Google Scholar 

  20. Johnson D, Leake JR, Read DJ (2001) Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytol 152:555–562. https://doi.org/10.1046/j.0028-646X.2001.00273.x

    Article  Google Scholar 

  21. Koide RT, Peoples MS (2012) On the nature of temporary yield loss in maize following canola. Plant Soil 360:259–269. https://doi.org/10.1007/s11104-012-1237-0

    Article  CAS  Google Scholar 

  22. Landry CP, Hamel C, Vanasse A (2008) Influence of arbuscular mycorrhizae on soil P dynamics, corn P nutrition and growth in a ridge-tilled commercial field. Can J Soil Sci 88:283–294. https://doi.org/10.4141/Cjss07024

    Article  CAS  Google Scholar 

  23. Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops - a meta-analysis. Soil Biol Biochem 81:147–158. https://doi.org/10.1016/j.soilbio.2014.11.013

    Article  CAS  Google Scholar 

  24. Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants - a meta-analysis. Soil Biol Biochem 69:123–131. https://doi.org/10.1016/j.soilbio.2013.11.001

    Article  CAS  Google Scholar 

  25. Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis. Plant Soil 374:523–537. https://doi.org/10.1007/s11104-013-1899-2

    Article  CAS  Google Scholar 

  26. Lewis WM, Wurtsbaugh WA, Paerl HW (2011) Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ Sci Technol 45:10300–10305. https://doi.org/10.1021/es202401p

    Article  PubMed  CAS  Google Scholar 

  27. Li H, Liu J, Li G, Shen J, Bergström L, Zhang F (2015) Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44:274–285. https://doi.org/10.1007/s13280-015-0633-0

    Article  PubMed Central  CAS  Google Scholar 

  28. Liu RM, Zhang PP, Wang XJ, Chen YX, Shen ZY (2013) Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agric Water Manag 117:9–18. https://doi.org/10.1016/j.agwat.2012.10.018

    Article  Google Scholar 

  29. Mackay JE, Cavagnaro TR, Müller Stöver DS, Macdonald LM, Grønlund M, Jakobsen I (2017) A key role for arbuscular mycorrhiza in plant acquisition of P from sewage sludge recycled to soil. Soil Biol Biochem 115:11–20. https://doi.org/10.1016/j.soilbio.2017.08.004

    Article  CAS  Google Scholar 

  30. Mcgill SM (2012) ‘Peak’ phosphorus? The implications of phosphate scarcity for sustainable investors. J Sustain Finance Invest 2:222–239. https://doi.org/10.1080/20430795.2012.742635

    Article  Google Scholar 

  31. Ray K, Mukherjee C, Ghosh AN (2013) A way to curb phosphorus toxicity in the environment: use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorus biofertilizer for Indian agriculture. Environ Sci Technol 47:11378–11379. https://doi.org/10.1021/es403057c

    Article  PubMed  CAS  Google Scholar 

  32. Rillig MC, Ramsey PW, Gannon JE, Mummey DL, Gadkar V, Kapulnik Y (2008) Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308:267–275. https://doi.org/10.1007/s11104-008-9629-x

    Article  CAS  Google Scholar 

  33. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  34. Smith SE, Manjarrez M, Stonor R, McNeill A, Smith FA (2015) Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment, shown by tracking with radioactive phosphorus. Appl Soil Ecol 96:68–74. https://doi.org/10.1016/j.apsoil.2015.07.002

    Article  Google Scholar 

  35. Springmann M et al (2018) Options for keeping the food system within environmental limits. Nature 562:519–525. https://doi.org/10.1038/s41586-018-0594-0

    Article  PubMed  CAS  Google Scholar 

  36. State Forestry Administration (1999) Forestry industry standard of China (LY/T 1271-1999). http://www.forestry.gov.cn/sites/main/main/index.jsp?a=xxfb

  37. State Forestry Administration (2015) Forestry industry standard of China (LY/T 1232-2016). http://www.forestry.gov.cn/sites/main/main/index.jsp?a=xxfb

  38. Storer K, Coggan A, Ineson P, Hodge A (2017) Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol 220:1285–1295. https://doi.org/10.1111/nph.14931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Takeda I, Fukushima A (2004) Phosphorus purification in a paddy field watershed using a circular irrigation system and the role of iron compounds. Water Res 38:4065–4074. https://doi.org/10.1016/j.watres.2004.08.003

    Article  PubMed  CAS  Google Scholar 

  40. Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13. https://doi.org/10.1007/s11104-013-1681-5

    Article  CAS  Google Scholar 

  41. Watts-Williams SJ, Cavagnaro TR (2014) Nutrient interactions and arbuscular mycorrhizas: a meta-analysis of a mycorrhiza-defective mutant and wild-type tomato genotype pair. Plant Soil 384:79–92. https://doi.org/10.1007/s11104-014-2140-7

    Article  CAS  Google Scholar 

  42. Xie XJ, Ran W, Shen QR, Yang CY, Yang JJ, Cao ZH (2004) Field studies on P-32 movement and P leaching from flooded paddy soils in the region of Taihu Lake, China. Environ Geochem Health 26:237–243. https://doi.org/10.1023/B:EGAH.0000039586.12907.e9

    Article  PubMed  CAS  Google Scholar 

  43. Xu G, Sun JN, Shao HB, Chang SX (2014) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60. https://doi.org/10.1016/j.ecoleng.2013.10.027

    Article  Google Scholar 

  44. Zhang ZJ, Zhang JY, He R, Wang ZD, Zhu YM (2007) Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin. Environ Pollut 145:425–433. https://doi.org/10.1016/j.envpol.2006.05.031

    Article  PubMed  CAS  Google Scholar 

  45. Zhang ZJ, Yao JX, Wang ZD, Xu X, Lin XY, Czapar GF, Zhang JY (2011) Improving water management practices to reduce nutrient export from rice paddy fields. Environ Technol 32:197–209. https://doi.org/10.1080/09593330.2010.494689

    Article  PubMed  CAS  Google Scholar 

  46. Zhang S, Wang L, Ma F, Zhang X, Li Z, Li S, Jiang X (2015a) Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields? J Environ Sci 33:211–218. https://doi.org/10.1016/j.jes.2015.01.016

    Article  CAS  Google Scholar 

  47. Zhang X et al (2015b) The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–267. https://doi.org/10.1111/tpj.12723

    Article  PubMed  CAS  Google Scholar 

  48. Zhang S, Wang L, Ma F, Zhang X, Fu D (2016) Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes. J Environ Sci 46:92–100. https://doi.org/10.1016/j.jes.2015.12.024

    Article  Google Scholar 

  49. Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222:543–555. https://doi.org/10.1111/nph.15570

    Article  PubMed  CAS  Google Scholar 

  50. Zheng C, Chai M, Jiang S, Zhang S, Christie P, Zhang J (2014) Foraging capability of extraradical mycelium of arbuscular mycorrhizal fungi to soil phosphorus patches and evidence of carry-over effect on new host plant. Plant Soil 1–17. https://doi.org/10.1007/s11104-014-2286-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (grant no. BK20160689). We thank Miao He for helping with data collection, Haiyang Xu for designing the microcosm, and Ertao Wang and Xiaowei Wang for providing the plant and AM fungus materials.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shujuan Zhang or Zhaoyang You.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tatsuhiro Ezawa

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Guo, X., Yun, W. et al. Arbuscular mycorrhiza contributes to the control of phosphorus loss in paddy fields. Plant Soil 447, 623–636 (2020). https://doi.org/10.1007/s11104-019-04394-2

Download citation

Keywords

  • Arbuscular mycorrhizal fungi
  • Rice
  • Phosphorus
  • Runoff
  • Leaching
  • Paddy fields