Skip to main content
Log in

X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

There are major knowledge gaps in understanding the translocation leading from nickel uptake in the root to accumulation in other tissues in tropical nickel hyperaccumulator plant species. This study focuses on two species, Rinorea cf. bengalensis and Rinorea cf. javanica and aims to elucidate the similarities and differences in the distribution of nickel and physiologically relevant elements (potassium, calcium, manganese and zinc) in various organs and tissues.

Methods

High-resolution X-ray fluorescence microscopy (XFM) of frozen-hydrated and fresh-hydrated tissue samples and nuclear microprobe (micro-PIXE) analysis of freeze-dried samples were used to provide insights into the in situ elemental distribution in these plant species.

Results

This study has shown that the distribution pattern of nickel hyperaccumulation is typified by very high levels of accumulation in the phloem bundles of roots and stems. In the leaves, nickel is preferentially located in epidermal cell region, whereas manganese is located mainly in the lower epidermis and zinc in the upper epidermis and palisade mesophyll. The abundant formation of calcium-oxalate crystals, lining the collenchyma, is a prominent feature of both Rinorea cf. bengalensis and Rinorea cf. javanica.

Conclusions

Future investigations on Rinorea cf. bengalensis and Rinorea cf. javanica should focus on unravelling the mechanisms of nickel uptake in the root, specifically targeting the identification of nickelspecific membrane transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baker AJM (1981) Accumulators and excluders - strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    CAS  Google Scholar 

  • Baker A, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw, A.J., Ed., Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 155-177.

  • Baker AJM, Brooks RR, Kersten WJ (1985) Accumulation of nickel by Psychotria species from the Pacific Basin. Taxon 34:89–95

    Google Scholar 

  • Baker AJM, Ernst WHO, van der Ent A, Malaisse F, Ginocchio R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge, pp 7–40

    Google Scholar 

  • Bhatia NP, Walsh KB, Orilc I, Siegele R, Ashwath N, Baker AJM (2004) Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii Bailey using nuclear microprobe (micro-PIXE) and EDXS techniques. Funct Plant Biol 31:1061–1074

    CAS  Google Scholar 

  • Bhatia NP, Baker AJM, Walsh KB, Midmore DJ (2005) A role for nickel in osmotic adjustment in drought-stressed plants of the nickel hyperaccumulator Stackhousia tryonii Bailey. Planta 223:134–139

    PubMed  CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716

    CAS  Google Scholar 

  • Bouman R, van Welzen P, Sumail S, Echevarria G, Erskine PD, van der Ent A (2018) Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical phytomining. Bot Stud 59:9

    PubMed  PubMed Central  Google Scholar 

  • Boyd RS, Jaffré T (2009) Elemental Concentrations of Eleven New Caledonian Plant Species from Serpentine Soils: Elemental Correlations and Leaf-Age Effects. Northeast Nat 16:93–110

    Google Scholar 

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7

    CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242

    CAS  Google Scholar 

  • Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall.) O.K. J Geochem Explor 7:295–300

    CAS  Google Scholar 

  • Brooks RR, Lee J, Jaffre T (1974) Some New Zealand and New Caledonian Plant Accumulators of Nickel. J Ecol 62:523–529

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977a) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    CAS  Google Scholar 

  • Brooks RR, Wither ED, Zepernick B (1977b) Cobalt and nickel in Rinorea species. Plant Soil 47:707–712

    CAS  Google Scholar 

  • Budka D, Mesjasz-Przybyłowicz J, Tylko G, Przybyłowicz WJ (2005) Freeze-substitution methods for Ni localization and quantitative analysis in Berkheya coddii leaves by means of PIXE. Nucl Instrum Meth Phys Res B 231:338–344

    CAS  Google Scholar 

  • Burge DO, Barker WR (2010) Evolution of nickel hyperaccumulation by Stackhousia tryonii (Celastraceae), a serpentinite-endemic plant from Queensland, Australia. Aus Syst Bot 23:415–430

    Google Scholar 

  • Callahan DL, Roessner U, Dumontet V, De Livera AM, Doronila A, Baker AJM, Kolev SD (2012) Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry 81:80–89

    PubMed  CAS  Google Scholar 

  • Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chaney RL, Baklanov I, Centofanti T, Broadhurst CL, Baker AJM, Reeves RD, van der Ent A, Roseberg RJ (2014) Phytoremediation and Phytomining: Using plants to Remediate Contaminated or Mineralized Environments. In: Rajakaruna N, Boyd RS, Harris T (eds) Plant Ecology and Evolution in Harsh Environments. Nova Science Publishers, NY, USA, pp 365–391

    Google Scholar 

  • Chen S, Deng J, Yuan Y, Flachenecker C, Mak R, Hornberger B, Jin Q, Shu D, Lai B, Maser J et al (2014) The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities. J Synchrotron Radiat 21:66–75

    PubMed  Google Scholar 

  • Cole MM (1973) Geobotanical and Biogeochemical Investigations in the Sclerophyllous Woodland and Shrub Associations of the Eastern Goldfield Area of Western Australia, with Particular Reference to the Role of Hybanthus floribundus (Lindl.) F. Muell. As a Nickel Indicator and Accumulator Plant. J Appl Ecol 10:269–320

    Google Scholar 

  • Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593

    CAS  Google Scholar 

  • Deng T-H-B, Tang Y-T, van der Ent A, Sterckeman T, Echevarria G, Morel J-L, Qiu R-L (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45

    CAS  Google Scholar 

  • Doolittle LR (1986) A semiautomatic algorithm for Rutherford backscattering analysis. Nucl Instrum Meth Phys Res B 15:227–231

    Google Scholar 

  • Fernando E, Quimado M, Doronila A (2014) Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys 37:1–13

    Google Scholar 

  • Gei V, Erskine PD, Harris HH, Echevarria G, Mesjasz-Przybyłowicz J, Barnabas AD, Przybyłowicz WJ, Kopittke PM, van der Ent A (2017) New tools for discovery of hyperaccumulator plant species and understanding their ecophysiology. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. SpringerNature, Berlin, pp 117–133

    Google Scholar 

  • Groeber S, Przybyłowicz WJ, Echevarria G, Montargès-Pelletier E, Barnabas AD, Mesjasz-Przybyłowicz J (2015) Fate of nickel in seedlings of Berkheya coddii during germination. Biol Plant 59:560–569

    CAS  Google Scholar 

  • Jacobs M, Moore DM (1971) Violaceae. In: Flora Malesiana ser. I, vol 7, no. 1, pp 179–212

  • Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Caledonie. Travaux et Documents de l’ORSTOM, Paris, pp 1–124

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: A hyperaccumulator of Nickel from New Caledonia. Science 193:579–580

    PubMed  Google Scholar 

  • Jaffré T, Brooks R, Trow J (1979) Hyperaccumulation of nickel by Geissois species. Plant Soil 51:157–161

    Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279. https://doi.org/10.3389/fpls.2013.00279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaffré T, Reeves RD, Baker AJM, van der Ent A (2018) The discovery of nickel hyperaccumulation in the New Caledonian tree Pycnandra acuminata: 40 years on. New Phytol 218:397–400

    PubMed  Google Scholar 

  • Jarvie JK, Stevens PF (1998) New species and notes on Violaceae and Flacourtiaceae from Indo-Malesia. Harv Pap Bot 3(2):253–262

    Google Scholar 

  • Jestrow B, Gutièrez Amaro J, Francisco-Ortega J (2012) Islands within islands: a molecular phylogenetic study of the Leucocroton alliance (Euphorbiaceae) across the Carribean Islands and within the serpentinite archipelago of Cuba. J Biogeogr 39:452–464

    Google Scholar 

  • Kachenko AG, Singh B, Bhatia NP, Siegele R (2008) Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthus floribundus subsp. floribundus using micro-PIXE spectroscopy. Nucl Instrum Meth Phys Res B 266:667–676

    CAS  Google Scholar 

  • Kelly P, Brooks R, Dilli S, Jaffré T (1975) Preliminary observations on the ecology and plant chemistry of some nickel-accumulating plants from New Caledonia. Proc R Soc Lond B 189:1–13

    Google Scholar 

  • Kersten W, Brooks R, Reeves R, Jaffré T (1979) Nickel uptake by New Caledonian species of Phyllanthus. Taxon 28:529–534

    CAS  Google Scholar 

  • Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237–251

    PubMed  CAS  Google Scholar 

  • Kirkham R, Dunn PA, Kucziewski A, Siddons DP, Dodanwela R, Moorhead GF, Ryan CG, De Geronimo G, Beuttenmuller R, Pinelli D, Pfeffer M, Davey P, Jensen M, Paterson D, de Jonge MD, Kusel M, McKinlay J (2010) The Maia Spectroscopy Detector System: Engineering for Integrated Pulse Capture, Low-Latency Scanning and Real-Time Processing. AIP Conference Series 1234:240–243

    CAS  Google Scholar 

  • Kopittke PM, Punshon T, Paterson DJ, Tappero RV, Wang P, Blamey FPC, van der Ent A, Lombi E (2018) Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. Plant Physiol 178(2):507–523

    PubMed  PubMed Central  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    PubMed  Google Scholar 

  • Lee J, Reeves R, Brooks R, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16:1503–1505

    CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffre T (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17:1033–1035

    CAS  Google Scholar 

  • McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    PubMed  CAS  Google Scholar 

  • McNear DH, Chaney RL, Sparks DL (2010) The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 71:188–2000

    PubMed  CAS  Google Scholar 

  • Meier SK, Adams N, Wolf M, Balkwill K, Muasya AM, Gehring CA, Bishop JM, Ingle RA (2018) Comparative RNA-seq analysis of nickel hyperaccumulating and non-accumulating populations of Senecio coronatus (Asteraceae). Plant J 95(6):1023–1038

    PubMed  CAS  Google Scholar 

  • Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot 65:1551–1564

    PubMed  CAS  Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz WJ (2001) Phytophagous insects associated with the Ni-hyperaccumulating plant Berkheya coddii (Asteraceae) in Mpumalanga, South Africa. S Afr J Sci 97(11–12):596–598

    CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2003) Nickel distribution in Berkheya coddii leaves by Micro-PIXE and SEM-EDS. Proc Microsc Soc S Afr 33:68

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2011) PIXE and metal hyperaccumulation: from soil to plants and insects. X-Ray Spectrom 40:181–185

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Balkwill K, Przybyłowicz WJ, Annegarn HJ (1994) Proton microprobe and X-ray fluorescence investigations of nickel distribution in serpentine flora from South Africa. Nucl Instrum Meth Phys Res B 89:208–212

    Google Scholar 

  • Mesjasz-Przybylowicz J, Balkwill K, Przybylowicz WJ, Annegarn HJ, Rama DBK (1996a) Similarity of nickel distribution in leaf tissue of two distantly related hyperaccumulating species. In: van der Maesen LJG, van de Burgt XM, van Medenbach de Roy JM (eds) The Biodiversity of African Plants, Proc. XIVth AETFAT Congress. Kluwer Academic Publishers, Dordrecht, pp 331–333 ISBN 978-94-009-0285-5

    Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz WJ, Prozesky VM, Pineda CA (1996b) Elemental distribution in a leaf of Senecio coronatus. Proceedings of the Microscopy Society of South Africa 26(68)

  • Mesjasz-Przybylowicz J, Przybylowicz WJ, Rama DBK, Pineda CA (1997a) Elemental distribution in the Ni hyperaccumulator – Senecio anomalochrous. Proceedings of the Microscopy Society of South Africa 27

  • Mesjasz-Przybylowicz J, Przybyłowicz WJ, Prozesky VM, Pineda CA (1997b) Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus. Nucl Instrum Meth Phys Res B 130:368–373

    CAS  Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz WJ, Pineda CA (2001a) Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. S Afr J Sci 97:591–593

    CAS  Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz WJ, Rama D, Pineda CA (2001b) Elemental distribution in Senecio anomalochrous, a Ni hyperaccumulator from South Africa. S Afr J Sci 97:593–595

    CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Migula P, Nakonieczny M, Przybyłowicz WJ, Augustyniak M, Tarnawska M, Głowacka E (2003) Ecophysiology of Chrysolina pardalina Fabricius (Chrysomelidae), a herbivore of the South African Ni hyperaccumulator Berkheya coddii (Asteraceae). In: RS Boyd, AJM. Baker, J Proctor (eds) Ultramafic rocks: their soils, vegetation and fauna. Proc. Fourth Int. Conf. on Serpentine Ecology, 21-26 April 2003. Science Reviews 2000 Ltd, 2004, pp 233-241. ISBN 1-900814-41-2

  • Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybyłowicz WJ, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Barnabas A, Przybyłowicz WJ (2007) Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant Soil 293:61–78

    Google Scholar 

  • Mesjasz-Przybylowicz J, Barnabas AD, Przybylowicz WJ (2011) Comparison of Cytology and Elemental Distribution in Chlorotic and Non-Chlorotic Parts of Leaves of the Ni Hyperaccumulator Berkheya coddii. Microsc Microanal 17(S2):254–255

  • Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, van der Ent A (2016) Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytol 209:1513–1526

    PubMed  CAS  Google Scholar 

  • Migula P, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Augustyniak M, Nakonieczny M, Głowacka E, Tarnawska M (2007) Micro-PIXE studies of elemental distribution in sap-feeding insects associated with Ni hyperaccumulator, Berkheya coddii. Plant Soil 293:197–207

    CAS  Google Scholar 

  • Migula P, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Augustyniak M, Nakonieczny M, Tarnawska M (2011) Micro-PIXE studies of Ni-elimination strategies in representatives of two families of beetles feeding on Ni-hyperaccumulating plant Berkheya coddii. X-Ray Spectrom 40:194–197

    CAS  Google Scholar 

  • Nkrumah P, Echevarria G, Erskine P, van der Ent A (2018) Phytomining: using plants to extract valuable metals from mineralised wastes and uneconomic resources. In: Extracting Innovations: Mining, Energy, and Technological Change in the Digital Age. The University of Queensland, Australia. CRC Press, Chapter 23, p 12.

  • Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019a) The first tropical ‘Metal Farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122

    CAS  Google Scholar 

  • Nkrumah PN, Erskine PD, Sumail S, Echevarria G, van der Ent A (2019b) Soil amendments effecting nickel uptake in tropical metal crops. J Geochem Explor 203:78–86

    CAS  Google Scholar 

  • Orłowska E, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Turnau K (2008) Nuclear microprobe studies of elemental distribution in mycorrhizal and nonmycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X-Ray Spectrom 37:129–132

    Google Scholar 

  • Paterson DJ, De Jonge MD, Howard DL, McKinlay WLJ, Starritt A, Kusel M, Ryan CG, Kirkham R, Moorhead G, Siddons DP (2011) The X-ray fluorescence microscopy beamline at the Australian synchrotron. AIP Conf Proc 1365:219

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Plant Biol 98:9995–10000

    CAS  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217-218:8–17

    PubMed  CAS  Google Scholar 

  • Proctor J, van Balgooy M, Fairweather GM, Nagy L (1994) A preliminary re-investigation of a plant geographical ‘El Dorado’. Trop Biodiv 2(2):303–316

    Google Scholar 

  • Prozesky VM, Przybylowicz WJ, van Achterbergh E, Churms CL, Pineda CA, Springhorn KA, Pilcher JV, Ryan CG, Kritzinger J, Schmitt H et al (1995) The NAC nuclear microprobe facility. Nucl Instrum Meth Phys Res B 104:36–42

    CAS  Google Scholar 

  • Przybylowicz WJ, Mesjasz-Przybylowicz J, Pineda CA, Churms CL, Springhorn KA, Prozesky VM (1999) Biological applications of the NAC nuclear microprobe. X-Ray Spectrom 28:237–243

    CAS  Google Scholar 

  • Rajakaruna N, Bohm BA (2002) Serpentine and its vegetation: a preliminary study from Sri Lanka. J Appl Bot 76:20–28

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. NATO Science Series (IV): Earth and Environmental Sciences, vol 68. Springer, Dordrecht, pp 25–52

    Google Scholar 

  • Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Am J Bot 68(5):708–712

    CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    PubMed  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2017) A global database for hyperaccumulator plants of metal and metalloid trace elements. New Phytol 18:407–411

    Google Scholar 

  • Ryan CG (2000) Quantitative trace element imaging using PIXE and the nuclear microprobe. Internat J Imag Sys Techn 11(4):219–230

    Google Scholar 

  • Ryan CG, Jamieson DN (1993) Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping. Nucl Instrum Meth Phys Res B 77:203–214

    Google Scholar 

  • Ryan CG, Jamieson DN, Churms CL (1995) A new method for on-line true-elemental imaging using PIXE and the proton microprobe. Nucl Instrum Meth Phys Res B 104:157–165

    CAS  Google Scholar 

  • Ryan CG, Kirkham R, Hough RM, Moorhead G, Siddons DP, de Jonge MD, Paterson DJ, De Geronimo G, Howard DL, Cleverley JS (2010) Elemental X-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle. Nucl Instrum Meth Phys Res A 619:37–43

    CAS  Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, Kuczewski A, Howard DL, Dunn PA, Falkenberg G et al (2014) Maia X-ray fluorescence imaging: Capturing detail in complex natural samples. J Phys Conf Ser 499:012002–012012

    Google Scholar 

  • Schroer CG, Boye P, Feldkamp JM, Patommel J, Samberg D, Schropp A, Schwab A, Stephan S, Falkenberg G, Wellenreuther G, Reimers N (2010) Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl Instrum Meth Phys Res A 616:93–97

    CAS  Google Scholar 

  • Severne BC (1974) Nickel accumulation by Hybanthus floribundus. Nature 248:807–808

    PubMed  CAS  Google Scholar 

  • Severne BC, Brooks RR (1972) A nickel-accumulating plant from Western Australia. Planta 103:91–94

    PubMed  CAS  Google Scholar 

  • Siddons DP, Kirkham R, Ryan CG, De Geronimo G, Dragone A, Kuczewski AJ, Li ZY, Carini GA, Pinelli D, Beuttenmuller R et al (2014) Maia X-ray Microprobe Detector Array System. J Phys Conf Ser 499:012001–012010

    Google Scholar 

  • Stevens PF (2000) Rinorea belalongii (Violaceae), a new species from Borneo. Novon 10:153–155

    Google Scholar 

  • Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    PubMed  CAS  Google Scholar 

  • Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007a) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Tech 70:55–68

    PubMed  CAS  Google Scholar 

  • Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007b) In-vacuum micro-PIXE analysis of biological specimens in frozen-hydrated state. Nucl Instrum Meth Phys Res B 260:141–148

    CAS  Google Scholar 

  • van der Ent A, Mulligan DR (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408

    PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Google Scholar 

  • van der Ent A, Erskine P, Sumail S (2015a) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L et al (2015b) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    PubMed  Google Scholar 

  • van der Ent A, Jaffre T, L’Huillier L, Gibson N, Reeves RD (2015c) The flora of ultramafic soils in the Australia-Pacific Region: state of knowledge and research priorities. Aus J Bot 63:173–190

    Google Scholar 

  • van der Ent A, Echevarria G, Tibbett M (2016) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82

    Google Scholar 

  • van der Ent A, Damien L, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861

    PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Przybyłowicz WJ, de Jonge MD, Harris HH, Ryan CG, Tylko G, Paterson DJ, Barnabas AD, Kopittke PM, Mesjasz-Przybyłowicz J (2018) X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol 218:432–452

    PubMed  Google Scholar 

  • van der Ent A, Echevarria G, Pollard AJ, Erskine PD (2019a) X-Ray Fluorescence Ionomics of Herbarium Collections. Sci Rep 9:4746

    PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Ocenar A, Tisserand R, Sugau JB, Erskine PD, Echevarria G (2019b) Herbarium X-ray Fluorescence Screening for nickel, cobalt and manganese hyperaccumulation in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58

    Google Scholar 

  • Wahlert G, Ballard HE (2012) A phylogeny of Rinorea (Violaceae) inferred from plastid DNA sequences with an emphasis on the African and Malagasy species. Syst Bot 37(4):964–973

    Google Scholar 

  • Wang YD, Mesjasz-Przybylowicz J, Tylko G, Barnabas AD, Przybylowicz WJ (2013) Micro-PIXE analyses of frozen-hydrated semi-thick biological sections. Nucl Instrum Meth Phys Res B 306:134–139

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Rositti Karim, Sukaibin Sumail (Sabah Parks) and Postar Miun (Sabah Forestry Department) for their help during the fieldwork in Malaysia. We thank Sabah Parks for granting permission to conduct research in Kinabalu Park, and the Sabah Biodiversity Council for research permits. This research was undertaken on the X-Ray Fluorescence Microscopy beamline of the Australian Synchrotron (part of ANSTO), Victoria, Australia. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE). This research was also undertaken at P06 at DESY, a member of the Helmholtz Association (HGF). We would like to thank Kathryn Spiers and Jan Garrevoet for assistance during the experiments. This research was undertaken at the nuclear microprobe facility of iThemba Laboratory for Accelerator Based Sciences in South Africa. We thank Eunice Grinan (UQ) for assistance with the SEM analysis. We acknowledge the Centre for Microscopy and Microanalysis of The University of Queensland. The French National Research Agency through the national “Investissements d’avenir” program (ANR-10-LABX-21, LABEX RESSOURCES21) and through the ANR-14-CE04-0005 Project “Agromine” is acknowledged for funding A. van der Ent's post-doctoral position in 2014–2015. A. van der Ent was the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council. H. H. Harris acknowledges the Australian Research Council for financial support (DP140100176). W.J. Przybylowicz and J. Mesjasz-Przybylowicz are recipients of the South African National Foundation incentive grants No 114693 and 114694, respectively.

Author information

Authors and Affiliations

Authors

Contributions

A.vdE, H.H.H and J.M.P conducted the fieldwork and collected the samples in Malaysia. A.vdE, M.dJ and H.H.H conducted the synchrotron X-ray Fluorescence Microscopy (XFM) experiment. J.M.P and W.P conducted the nuclear microbe (PIXE) experiment. A.B conducted the anatomical investigations. R.M performed the XFM data processing and analysis. W.P performed the PIXE data processing and analysis. A.vdE conducted the SEM imaging and bulk elemental analysis. A.VDE, J.M.P, W.P., A.B, M.dJ, RM and H.H.H wrote the manuscript.

Corresponding author

Correspondence to Antony van der Ent.

Additional information

Responsible Editor: Juan Barcelo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 187 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Ent, A., de Jonge, M.D., Mak, R. et al. X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. Plant Soil 448, 15–36 (2020). https://doi.org/10.1007/s11104-019-04386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04386-2

Keywords

Navigation