Insight into the truffle brûlé: tripartite interactions between the black truffle (Tuber melanosporum), holm oak (Quercus ilex) and arbuscular mycorrhizal plants

Abstract

Aim

Tuber melanosporum is an ectomycorrhizal (ECM) fungus from Mediterranean transitional ecosystems where ECM trees start to dominate among arbuscular-mycorrhizal (AM) shrubs and herbs (companion plants). Its presence entails the development of ‘brûlés’, where vegetation is scarce for unknown reasons. Current T. melanosporum production comes from plantations where management often suppresses the understory vegetation, although empirical knowledge advocates a positive role of some companion plants in truffle production. This study aimed at (i) experimentally testing the reciprocal interaction between T. melanosporum and companion plants and (ii) examining T. melanosporum-mediated soil feedback involved in the dynamics of truffle ground vegetation.

Methods

A three-year experiment was set up with Quercus ilex associated with T. melanosporum (or not, as control), grown in association (or not, as control) with a companion plant. Six companion plant species were chosen based on different empirical criteria including those indicated by local truffle growers’ knowledge. A trait-based approach was applied to plants and associated fungi (abundance of T. melanosporum and AM fungi mycelium).

Results-conclusion

Companion plants promoted the development of truffle mycelium. In the presence of T. melanosporum, companion plant growth and nutrition and AM fungi abundance decreased, while the nutrition status of its host increased. The truffle inhibited germination of weed seeds. These results highlight the role of T. melanosporum in mediating plant-plant interactions, possible mechanisms underlying brûlé formation and a potential successional role for T. melanosporum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M (2017) Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. PNAS 114:9403–9412

    Google Scholar 

  2. Anderson IC, Genney DR, Alexander IJ (2014) Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a Scots pine forest. New Phytol 201:1423–1430

    CAS  PubMed  Google Scholar 

  3. Angelini P, Tirillini B, Properzi A, Rol C, Venanzoni R (2015) Identification and bioactivity of the growth inhibitors in Tuber spp. methanolic extracts. Plant Biosyst 149:1000–1009

    Google Scholar 

  4. Awaydul A, Zhu W, Yuan Y, Xiao J, Hu H, Chen X, Koide RT, Cheng L (2019) Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29:29–38

    CAS  PubMed  Google Scholar 

  5. Baragatti M, Grollemund PM, Montpied P, Dupouey JL, Gravier J, Murat C, Le Tacon F (2019) Influence of annual climatic variations, climate changes, and sociological factors on the production of the Périgord black truffle (Tuber melanosporum Vittad.) from 1903–1904 to 1988–1989 in the Vaucluse (France). Mycorrhiza 29:113–125

    PubMed  Google Scholar 

  6. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  7. Bauer JT, Mack KM, Bever JD (2015) Plant-soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere 6:1–12

    Google Scholar 

  8. Becklin KM, Pallo ML, Galen C (2012) Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J Ecol 100:343–351

    Google Scholar 

  9. Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577

    CAS  PubMed  Google Scholar 

  10. Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184

    CAS  PubMed  Google Scholar 

  11. Bever JD (2002) Negative feedback within a mutualism: host–specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc Lond B Biol Sci 269:2595–2601

    Google Scholar 

  12. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig M, Stock WD, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    PubMed  PubMed Central  Google Scholar 

  13. Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    PubMed  Google Scholar 

  15. Callot G (1999) La truffe, la terre, la vie. Editions Quae, Paris

    Google Scholar 

  16. Chatin A (1869) La Truffe, étude des conditions générales de la production truffière. Ed. Buchard-Husard, Paris, France. (New edition by Lacour, Nîmes)

  17. Ciccarello da Bevagna A (1564) De Tuberibus. Padova

  18. de Bosredon A (1887) Manuel du trufficulteur. Lacour, Nîmes

    Google Scholar 

  19. Defossez CE, Djiéto-Lordon C, McKey D et al (2010) Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen. Proc R Soc Lond B Biol Sci 278:1419–1426

    Google Scholar 

  20. Dickie IA, Koide RT, Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72:505–521

    Google Scholar 

  21. Douet JP, Castroviejo M, Mabru D, Chevalier G, Dupré C, Bergougnoux F, Ricard JM, Médina B (2004) Rapid molecular typing of Tuber melanosporum, T. brumale and T. indicum from tree seedlings and canned truffles. Anal Bioanal Chem 379:668–673

    CAS  PubMed  Google Scholar 

  22. Druille M, Cabello MN, Omacini M, Golluscio RA (2013) Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol 64:99–103

    Google Scholar 

  23. Fasolo-Bonfante P, Fontana A, Montacchini F (1971) Studi sull’ecologia del Tuber melanosporum I. Dimostrazione di un effetto fitotossico. Allionia 17:48–53

    Google Scholar 

  24. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    PubMed  Google Scholar 

  25. Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14(2):111–117

    PubMed  Google Scholar 

  26. González-Armada B, De Miguel AM, Cavero RY (2010) Ectomycorrhizae and vascular plants growing in brulés as indicators of below and above ground microecology of black truffle production areas in Navarra (Northern Spain). Biodivers Conserv 19:3861–3891

    Google Scholar 

  27. Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21:433–438

    CAS  PubMed  Google Scholar 

  28. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  29. Knoblochová T, Kohout P, Püschel D, Doubková P, Frouz J, Cajthaml KJ, Vosátka M, Rydlová J (2017) Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. Mycorrhiza 27:775–789

    PubMed  Google Scholar 

  30. Le Tacon F, Zeller B, Plain C, Hossann C, Bréchet C, Martin F, Kohler A, Villerd J, Robin C (2015) Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and whole-genome oligoarrays. Plant Soil 395:351–373

    Google Scholar 

  31. Mamoun M, Oliver JM (1997) Mycorrhizal inoculation of cloned hazels by Tuber melanosporum: effect of soil disinfestation and co-culture with Festuca ovina. Plant Soil 188:221–226

    CAS  Google Scholar 

  32. Martegoute J-C, Courdeau A (2002) Plantes des Causses et des truffières. Fédération départementale des trufficulteurs du Périgord. Périgueux, France

    Google Scholar 

  33. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  34. Mello A, Lumini E, Napoli C, Bianciotto V, Bonfante P (2015) Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé. Fungal biol 119:518–527

    CAS  PubMed  Google Scholar 

  35. Montacchini F, Caramiello Lomagno R (1977) Studi sull’écologia del Tuber melanosporum. II. Azione inibitrice su specie erbacee della flora spontanea. Allionia 22:81–85

    Google Scholar 

  36. Murat C (2015) Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25:77–81

    PubMed  Google Scholar 

  37. Negga R, Stuart JA, Machen ML, Salva J, Lizek AJ, Richardson J, Osborne A, Mirallas O, McVey KA, Fitsanakis VA (2012) Exposure to glyphosate-and/or Mn/Zn-Ethylene-bis-dithiocarbamate-containing pesticides leads to degeneration of γ-aminobutyric acid and dopamine neurons in Caenorhabditis elegans. Neurotox Res 21:281–290

    CAS  PubMed  Google Scholar 

  38. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    CAS  PubMed  Google Scholar 

  39. Núñez JAD, Serrano JS, Barreal JAR, de Omeñaca González JAS (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manag 231:226–233

    Google Scholar 

  40. Olivera A, Fischer CR, Bonet JA, de Aragón M, Oliach D, Colinas C (2011) Weed management and irrigation are key treatments in emerging black truffle (Tuber melanosporum) cultivation. New For 42:227–239

    Google Scholar 

  41. Olivier JM, Savignac JC, Sourzat P (2012) Truffe et trufficulture. Fanlac Editions, Périgueux

    Google Scholar 

  42. Pacioni G (1991) Effects of Tuber metabolites on the rhizospheric environment. Mycol Res 95:1355–1358

    CAS  Google Scholar 

  43. Parladé J, De la Varga H, De Miguel AM, Sáez R, Pera J (2013) Quantification of extraradical mycelium of Tuber melanosporum in soils from truffle orchards in northern Spain. Mycorrhiza 23:99–106

    PubMed  Google Scholar 

  44. Plattner I, Hall IR (1995) Parasitism of non-host plants by the mycorrhizal fungus Tuber melanosporum. Mycol Res 11:1367–1370

    Google Scholar 

  45. Queralt M, Parladé J, de Miguel JP (2017) Seasonal dynamics of extraradical mycelium and mycorrhizas in a black truffle (Tuber melanosporum) plantation. Mycorrhiza 27:565–576

    CAS  PubMed  Google Scholar 

  46. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R project.org/

  47. Rivera-Becerril F, van Tuinen D, Chatagnier O, Rouard N, Béguet J, Kuszala C, Soulas G, Gianinazzi-Pearson V, Martin-Laurent F (2017) Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Sci Total Environ 577:84–93

    CAS  PubMed  Google Scholar 

  48. Schneider-Maunoury L, Leclercq S, Clément C, Covès H, Lambourdière J, Sauve M, Richard F, Selosse MA, Taschen E (2018) Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol 31:59–68

    Google Scholar 

  49. Schneider-Maunoury L, Deveau A, Moreno M, Todesco F, Belmondo S, Murat C, Courty PE, Jąkalski M, Selosse M-A (2019) Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonize roots of non-ectomycorrhizal plants in natural environments. New Phytologist. https://doi.org/10.1111/nph.16321

  50. Selosse MA, Rousset F (2011) The plant-fungal marketplace. Science 333:828–829

    CAS  PubMed  Google Scholar 

  51. Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    PubMed  Google Scholar 

  52. Selosse MA, Dubois M-P, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069

    CAS  PubMed  Google Scholar 

  53. Selosse MA, Charpin M, Not F (2017) Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett 20:246–263

    PubMed  Google Scholar 

  54. Selosse MA, Schneider-Maunoury L, Martos F (2018) Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytol 217:968–972

    PubMed  Google Scholar 

  55. Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Google Scholar 

  56. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Amsterdam

    Google Scholar 

  57. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    CAS  PubMed  Google Scholar 

  59. Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Streiblová E, Gryndlerova H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80:1–8

    PubMed  Google Scholar 

  61. Taschen E, Sauve M, Taudiere A, Parladé J, Selosse MA, Richard F (2015) Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microbiol 17:2747–2761

    PubMed  Google Scholar 

  62. Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanakij P, Pennanen T (2011) Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 77:8523–8531

    CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Heijden MGA, Martin F, Selosse MA, Sanders I (2015) Mycorrhizal ecology and evolution: the past, the present and the future. New Phytol 205:1406–1423

    PubMed  Google Scholar 

  64. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos J, Kulmatiski A, Schwetzer JA, Suding KN, van der Voorde TFJ, Wardle D (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Google Scholar 

  65. Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemke A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

    CAS  PubMed  Google Scholar 

  67. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    CAS  PubMed  Google Scholar 

  68. Wipf D, Krajinski F, Courty PE (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142

    CAS  PubMed  Google Scholar 

  69. Zampieri E, Chiapello M, Daghino S, Bonfante P, Mello A (2016) Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci Rep 6:25773

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang L, Feng G, Declerck S (2018) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12:2339–2351

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We warmly acknowledge Pierre Bernadach who kindly allowed us to collect soil in his truffle grounds. This paper is dedicated to the memory of the late Philippe Nguyen, who helped a lot to establish this research. We are particularly thankful to Thierry Mathieu and David Degueldre who helped us to set up the experiment, to Catherine Roumet, Jean-Marc Ourcival, and Michael Staudt for helpful advice, to Romain Domingo and Nancy Rakotondrazafy for soil characterization, to Laure Schneider-Maunoury for a read-through, to David Marsh for correcting our English and to Thomas Kuyper as well as two anonymous reviewers for their comments on earlier versions of this paper. Long-term monitoring and all measurements would not have been possible without the enthusiastic participation of Camille Cros, Benjamin Sembeil, Alexis Corbara, Johan Quilbe and Franklin Fabre. This work was funded by the French Agence Nationale de la Recherche (programme SYSTRUF), the Région Languedoc-Roussillon (program SYSTRUF-LR), the Spanish Ministry of Science, Innovation and Universities, grant RTI2018-093907-B-C21, and the Fondation de France.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Taschen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M.-A. Selosse and F. Richard equally supervising

Responsible Editor: Thom W. Kuyper.

Electronic Supplementary Material

ESM 1

(DOCX 27 kb)

ESM 2

(PPTX 1296 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taschen, E., Sauve, M., Vincent, B. et al. Insight into the truffle brûlé: tripartite interactions between the black truffle (Tuber melanosporum), holm oak (Quercus ilex) and arbuscular mycorrhizal plants. Plant Soil 446, 577–594 (2020). https://doi.org/10.1007/s11104-019-04340-2

Download citation

Keywords

  • Ectomycorrhizae
  • Endophytism
  • Quantitative PCR
  • Plant-soil feedback
  • Secondary succession