Skip to main content
Log in

Characterization of the main magnesium transporters mediating different Mg translocation from root to shoot between Mg-tolerant and Mg-sensitive Brassica napus cultivars under magnesium deficiency stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Magnesium (Mg) deficiency impacts many metabolic processes in Brassica napus (B. napus), leading to yield loss. However, the mechanism of Mg2+ uptake and translocation in B. napus remains unknown.

Methods

After screening 39 genotypes of B. napus under Mg-deficient conditions, the cultivars P160 and P153 were selected according to their Mg transfer factor (TF) from root to shoot. We further characterized these two genotypes under Mg-deficiency by analyzing chlorophyll concentration, malondialdehyde and peroxidase activity, and reducing sugar concentration in leaves. Additionally, we performed transcriptomics and qRT-PCR assays on P153 and P160 shoots and roots. The identified functional genes involved in Mg transport were characterized by functional assays in yeast and Arabidopsis mutants.

Results

The physiological analysis revealed that P160 (Mg tolerance cultivar; Mg-T) is more tolerant than P153 (Mg sensitive cultivar; Mg-S) under magnesium-deficient environments. Transcriptomics and qRT-PCR assays revealed that transcript levels of BnMGT1–2 and BnMGT6–1 were more significantly up-regulated in the shoot of Mg-T cultivar than that of the Mg-S cultivar under Mg limitation. Functional assays of BnMGT1–2 and BnMGT6–1 reveals that BnMGT1–2 and BnMGT6–1 are the two main functional Mg transporters mediating Mg translocation from root to shoot under low Mg conditions.

Conclusion

Mg-T is more efficient in the translocation of Mg from root to shoot than Mg-S. BnMGT1–2 and BnMGT6–1 should be the two main Mg transporters associated with Mg translocation under Mg deficiency condition, which caused the different Mg efficiency between the Mg-T and Mg-S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken RL, Dickson T, Hailes KJ, Moody PW, Aitken RL, Dickson T, Hailes KJ, Moody PW (1999) Response of field-grown maize to applied magnesium in acidic soils in North-Eastern Australia. Aust J Agric Res 50:191–198

    Article  CAS  Google Scholar 

  • Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, Kocher J-PA (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina genome analyzer. BMC Genomics 10:531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baier D, Latzko E (1975) Properties and regulation of C-1-fructose-1,6-diphosphatase from spinach chloroplasts. BBA-Bioenergetics 396:141–147

    Article  CAS  PubMed  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33:261–295

    Article  CAS  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010) Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses. Physiol Plant 139:401–412

    CAS  PubMed  Google Scholar 

  • Cakmak I, Yazi̇Ci̇ AM (2010) Magnesium: a forgotten element in crop production. Better Crops with Plant Food 94:23–25

    Google Scholar 

  • Cammarano P, Felsani A, Gentile M, Gualerzi C, Romeo A, Wolf G (1972) Formation of active hybrid 80-S particles from subunits of pea seedlings and mammalian liver ribosomes. Bba 281:625–642

    CAS  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium -mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Conn SJ, Conn V, Tyerman SD, Kaiser BN, Leigh RA, Gilliham M (2011) Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol 190:583–594

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Chang C, Yan S, Xiao L, Wang P, Ping GH (2008) High potassium aggravates the oxidative stress Inducedy by magnesium deficiency in Rice leaves. Pedosphere 18:316–327

    Article  CAS  Google Scholar 

  • Gebert M, Meschenmoser K, Svidova S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21:4018–4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. The Crop Journal 4:83–91

    Article  Google Scholar 

  • Hermans C, Verbruggen N (2005) Physiological characterization of mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161

    Article  CAS  PubMed  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Craciun A, Inze D, Verbruggen N (2010) Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytol 187:119–131

    Article  CAS  PubMed  Google Scholar 

  • Hmiel SP, Snavely MD, Miller CG, Maguire ME (1986) Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168:1444–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hortensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  CAS  PubMed  Google Scholar 

  • Hua JF, Zhang S, Cui JJ, Wang DJ, Wang CY, Luo JY, Lv LM, Ma Y (2013) Functional characterizations of one odorant binding protein and three chemosensory proteins from Apolygus lucorum (Meyer-Dur) (Hemiptera: Miridae) legs. J Insect Physiol 59:690–696

    Article  CAS  PubMed  Google Scholar 

  • Jatinder K, Gu K, Jatinder S, Yin Z (2010) An improved method for RNA isolation and cDNA library construction from immature seeds of Jatropha curcas L. BMC Res Notes 3:126–126

    Article  CAS  Google Scholar 

  • Knoop V, Grothmalonek M, Gebert M, Eifler K, Weyand K (2005) Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Genet Genomics 274:205–216

    Article  CAS  PubMed  Google Scholar 

  • Laing WA, Christeller JT (1976) A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J 159:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Tutone AF, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule Electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28:9423–9429

    Article  CAS  PubMed  Google Scholar 

  • Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J, Chen L, Li D, Luan S (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell 26:2234–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DL, Kennedy EP (1972) Transport of magnesium by a repressible and a nonrepressible system in Escherichia coli. Proc Natl Acad Sci U S A 69:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda K, Kamiya T, Shikanai Y, Shigenobu S, Yamaguchi K, Fujiwara T (2016) The Arabidopsis mg transporter, MRS2-4, is essential for mg homeostasis under both low and high mg conditions. Plant Cell Physiol 57:754–763

    Article  CAS  PubMed  Google Scholar 

  • Qiu ZB, Wang YF, Zhu AJ, Peng FL, Wang LS (2014) Exogenous sucrose can enhance tolerance of Arabidopsis thaliana seedlings to salt stress. Biol Plant 58:611–617

    Article  CAS  Google Scholar 

  • Saito T, Kobayashi NI, Tanoi K, Iwata N, Suzuki H, Iwata R, Nakanishi TM (2013) Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice. Plant Cell Physiol 54:1673–1683

    Article  CAS  PubMed  Google Scholar 

  • Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate mg 2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501

    Article  CAS  PubMed  Google Scholar 

  • Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Banks JL, Snavely MD, Maguire ME (1993) Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem 268:14071–14080

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Thompson LJ, Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177:1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snavely MD, Florer JB, Miller CG, Maguire ME (1989) Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171:4761–4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tang RJ, Luan S (2017) Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Curr Opin Plant Biol 39:97–105

    Article  CAS  PubMed  Google Scholar 

  • Tanoi K, Kobayashi NI, Saito T, Iwata N, Kamada R, Iwata R, Suzuki H, Hirose A, Ohmae Y, Sugita R, Nakanishi TM (2014) Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using 28 mg as a tracer. Plant Soil 384:69–77

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2013) Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368:87–99

    Article  CAS  Google Scholar 

  • Wang D, Yang C, Dong L, Zhu J, Wang J, Zhang S (2015) Comparative transcriptome analyses of drought-resistant and - susceptible Brassica napus L. and development of EST-SSR markers by RNA-Seq. Journal of Plant Biology 58:259–269

    Article  CAS  Google Scholar 

  • Wang P, Yang C, Chen H, Luo L, Leng Q, Li S, Han Z, Li X, Song C, Zhang X, Wang D (2018a) Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L. BMC Plant Biol 18:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Sun J, Li S, Lu K, Meng H, Xiao Z, Zhang Z, Li J, Luo F, Li N (2019) Physiological, genomic and transcriptomic comparison of two Brassica napus cultivars with contrasting cadmium tolerance. Plant Soil 441:71–87

    Article  CAS  Google Scholar 

  • Wang Z, Yang C, Chen H, Wang P, Wang P, Song C, Zhang X, Wang D (2018b) Multi-gene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. Plant Sci 274:410–419

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SR, Welch RM, Mayland HF, Grunes DL (1990) Magnesium in plants: uptake, distribution, function and utilization by man and animals. Met Ions Biol Syst 26:33–56

    CAS  Google Scholar 

  • Williams L, Salt DE (2009) The plant ionome coming into focus. Curr Opin Plant Biol 12:247–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi CC, Yamaji N, Motoyama R, Nagamura Y, Jian FM (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in Rice. Plant Physiol 159:1624–1633

    Article  CAS  Google Scholar 

  • Zhou XA, Hao QN, Sha AH, Wang C, Zhou R, Chen SL (2011) Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 12:1–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R & D Program of China (2018YFD0200903), National Natural Science Foundation of China (31870587; 31400063; 31500038) and Fundamental Research Funds for the Central Universities (XDJK2017B030; SWU116021; XDJK2018C095; SWU118114; SWU115018), Research Funds of Scientific Platform and Base Construction (cstc2014pt-sy0017), and The Recruitment Program for Foreign Experts (No. WQ20125500073).

Author information

Authors and Affiliations

Authors

Contributions

JS and NL designed and conceived the study and drafted the manuscript. JS, SW and SL performed experiments and data analysis. NL, SW, HM, SL, ZZ, FL and JL coordinated the research and helped to finalize the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Feng Luo or Nannan Li.

Additional information

Responsible Editor: Ismail Cakmak.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight: Physiological and transcriptomic comparison of two Brassica napus cultivars and transgenic analysis revealed that BnMGT1-2 and BnMGT6-1 are the two main Mg transporters uniquely associated with response to Mg deficiency tolerance

Electronic supplementary material

ESM 1

(DOCX 2170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Li, S., Wang, S. et al. Characterization of the main magnesium transporters mediating different Mg translocation from root to shoot between Mg-tolerant and Mg-sensitive Brassica napus cultivars under magnesium deficiency stress. Plant Soil 445, 453–468 (2019). https://doi.org/10.1007/s11104-019-04303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04303-7

Keywords

Navigation