Dynamics of erosion processes in the tropics: a dendrogeomorphological approach in an Ultisol of southeastern Brazil

Abstract

Background and aims

Soil erosion is one of the degradation processes that historically has caused great impacts on agricultural activities and the environment. It is responsible for soil loss, reduced productivity and various environmental impacts. Given the importance of research related to understanding the soil erosion process, the dendrogeomorphology technique has a significant role in qualifying and quantifying this degradation process. It is a technique that uses the structure of the root and stem wood of trees affected by erosion processes to date these events and measure the rate of soil loss. The objective of this study was to understand the dynamics of the erosion process through the dendrogeomorphological approach.

Methods

The changes in growth pattern of exposed roots of Esenbeckia leiocarpa trees (guarantã) were studied, such as growth ring width, eccentricity, vessel frequency and scars.

Results

The results obtained demonstrated the potential of the species for dendrogeomorphological studies, since the changes in growth patterns after exposure allowed to date the first year of root exposition.

Conclusions

The dendrogeomorphology technique proved to be effective in understanding the process dynamics of complex systems, such as the opening of permanent and ephemeral gullies. In addition, it is effective in inferring soil loss rates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM (2013b) Modeling monthly mean air temperature for Brazil. Theor Appl Climatol 113(3–4):407–427. https://doi.org/10.1007/s00704-012-0796-6

    Article  Google Scholar 

  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Spavorek G (2013a) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  3. Ballesteros-Cánovas JA, Bodoque JM, Lucía A, Martín-Duque JF, Díez-Herrero A, Ruiz-Villanueva V, Rubiales JM, Genova M (2013) Dendrogeomorphology in badlands: methods, case studies and prospects. Catena 106:113–122. https://doi.org/10.1016/j.catena.2012.08.009

    Article  Google Scholar 

  4. Bodoque JM, Lucía A, Ballesteros JA, Martín-Duque JF, Rubiales JM, Genova M (2011) Measuring medium-term sheet erosion in gullies from trees: a case study using dendrogeomorphological analysis of exposed pine roots in Central Iberia. Geomorphology 134:417–425. https://doi.org/10.1016/j.geomorph.2011.07.016

    Article  Google Scholar 

  5. Bodoque JM, Ballesteros-Cánovas JA, Lucía A, Díez-Herrero A, Martín-Duque JF (2015) Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surf Process 40:1146–1157. https://doi.org/10.1002/esp.3701

    Article  Google Scholar 

  6. Braam RR, Weiss EEJ, Burrough PA (1987) Spatial and temporal analysis of mass movement using dendrochronology. Catena 14:573–584

    Article  Google Scholar 

  7. Casalı J, López JJ, Giráldez JV (1999) Ephemeral gully erosion in southern Navarra (Spain). Catena 36:65–84. https://doi.org/10.1016/S0341-8162(99)00013-2

    Article  Google Scholar 

  8. Chaplot V, Le Bissonnais Y (2000) Field measurements of interrill erosion under\- different slopes and plot sizes. Earth surf process Landf 25:145‑153. https://doi.org/10.1002/(SICI)1096-9837(200002)25:2<145::AID-ESP51>3.0.CO;2-3 cited by: 77

  9. Chartier MP, Giantomasi MA, Renison D, Roig FA (2016) Exposed roots as indicators of geomorphic processes: a case-study from Polylepis mountain woodlands of Central Argentina. Dendrochronologia 37:57–63. https://doi.org/10.1016/j.dendro.2015.11.003

    Article  Google Scholar 

  10. Corona C, Saez JL, Rovéra G, Stoffel M, Astrade L, Berger F (2011) High resolution, quantitative reconstruction of erosion rates based on anatomical changes in exposed roots at Draix, Alpes de haute-Provence—critical review of existing approaches and independent quality control of results. Geomorphology 125:433–444. https://doi.org/10.1016/j.geomorph.2010.10.030

    Article  Google Scholar 

  11. De Oliveira MAT (1989) Erosion disconformities and gully morphology: a threedimensional approach. Catena 16:413–423. https://doi.org/10.1016/0341-8162(89)90024-6

    Article  Google Scholar 

  12. Díaz AR, Sanleandro PM, Soriano AS, Serrato FB, Faulkner H (2007) The causes of piping in a set of abandoned agricultural terraces in Southeast Spain. Catena 69:282–293. https://doi.org/10.1016/j.catena.2006.07.008

    Article  Google Scholar 

  13. Faulkner H (2013) Badlands in marl lithologies: a field guide to soil dispersion, subsurface erosion and piping-origin gullies. Catena 106:42–53. https://doi.org/10.1016/j.catena.2012.04.005

    CAS  Article  Google Scholar 

  14. Gärtner H (2007) Tree roots—methodological review and new development in dating and quantifying erosive processes. Geomorphology 86:243–251. https://doi.org/10.1016/j.geomorph.2006.09.001

    Article  Google Scholar 

  15. Gärtner H, Schweingruber FH, Dikau R (2001) Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia 19:81–91

    Google Scholar 

  16. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221

    Google Scholar 

  17. Hitz OM, Gärtner H, Heinrich I, Monbaron M (2008) Application of ash (Fraxinus excelsior L.) roots to determine erosion rates in mountain torrents. Catena 72:248–258. https://doi.org/10.1016/j.catena.2007.05.008

    Article  Google Scholar 

  18. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  19. Howell BE, Mathiasen RL (2004) Growth impacts of Psittacanthus angustifolius Kuijt on Pinus oocarpa Schiede in Honduras. For Ecol Manag 198:75–88. https://doi.org/10.1016/j.foreco.2004.03.047

    Article  Google Scholar 

  20. Hudson NW (1965) The influence of rainfall on the mechanics of soil erosion: with particular reference to southern Rhodesia. University of Cape Town, Cape Town

    Google Scholar 

  21. IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bull 10:219–332

    Article  Google Scholar 

  22. IBGE (2007) Manual Técnico de Pedologia. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  23. Iserloh T, Ries JB, Cerdà A, Echeverría MT, Fister W, Geißler C, Kuhn NJ, León FJ, Peters P, Schindewolf M, Schmidt J, Scholten T, Seeger M (2013) Comparative measurements with seven rainfall simulators on uniform bare fallow land. Z Für Geomorphol Suppl Issues 57:11–26. https://doi.org/10.1127/0372-8854/2012/S-00085

    Article  Google Scholar 

  24. Jones JAA (2004) Implications of natural soil piping for basin management in upland Britain. Land Degrad Dev 15:325–349. https://doi.org/10.1002/ldr.618

    Article  Google Scholar 

  25. Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539. https://doi.org/10.1002/ldr.472

    Article  Google Scholar 

  26. Lawler DM (2005) The importance of high-resolution monitoring in erosion and deposition dynamics studies: examples from estuarine and fluvial systems. Geomorphology 64:1–23. https://doi.org/10.1016/j.geomorph.2004.04.005

    Article  Google Scholar 

  27. Lisi CS, Tomazello-Filho M, Botosso PC, Roig FA, Maria VR, Ferreira-Fedele L, Voigt AR (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in Southeast Brazil. IAWA J 29:189–207. https://doi.org/10.1163/22941932-90000179

    Article  Google Scholar 

  28. Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1122

    CAS  Article  Google Scholar 

  29. Poesen J (2018) Soil erosion in the Anthropocene: research needs. Earth Surf Proces Landf 43:64–84. https://doi.org/10.1002/esp.4250

    Article  Google Scholar 

  30. Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. Catena 50:91–133. https://doi.org/10.1016/S0341-8162(02)00143-1

    Article  Google Scholar 

  31. Santos HG, Carvalho Junior WD, Dart RDO, Áglio MLD, de Sousa JS, Pares JG, Fontana A, Martins AL da S, Oliveira AP (2011). O novo mapa de solos do Brasil: legenda atualizada. Embrapa Solos-Documentos, Rio de Janeiro

  32. Šilhán K, Stoffel M (2015) Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236:34–43. https://doi.org/10.1016/j.geomorph.2015.02.003

    Article  Google Scholar 

  33. Stoffel M, Corona C, Ballesteros-Cánovas JA, Bodoque JM (2013) Dating and quantification of erosion processes based on exposed roots. Earth-Sci Rev 123:18–34. https://doi.org/10.1016/j.earscirev.2013.04.002

    Article  Google Scholar 

  34. Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, predicition, measurement, and control. John Wiley & Sons, New York

    Google Scholar 

  35. Trimble SW, Crosson P (2000) US soil erosion rates–myth and reality. Science 289:248–250. https://doi.org/10.1126/science.289.5477.248

    CAS  Article  PubMed  Google Scholar 

  36. Verachtert E, Van Den Eeckhaut M, Poesen J, Deckers J (2013) Spatial interaction between collapsed pipes and landslides in hilly regions with loess-derived soils: poorly drained landslides may create favourable conditions for piping. Earth Surf Process Landf 38:826–835. https://doi.org/10.1002/esp.3325

    Article  Google Scholar 

  37. Vidal-Torrado P, Lepsch IF (1999) Relações material de origem / solo e pedogênese em uma seqüência de solos predominantemente argilosos e Latossólicos sobre psamitos na Depressão Periférica Paulista. Rev Bras de Ciência do Solo 23:357–369

    CAS  Article  Google Scholar 

  38. Woodward DE (1999) Method to predict cropland ephemeral gully erosion. Catena 37:393–399. https://doi.org/10.1016/S0341-8162(99)00028-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Council for Scientific and Technological Development (CNPq) for a graduate scholarship, fellowship and financing of the project. They also thank Jonathan Barichivich for the help in preparing the software scripts used in this paper and the reviewers for the valuable suggestions and comments that permitted to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel Cooper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Amandine Erktan.

Electronic supplementary material

ESM 1

(DOCX 561 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bovi, R.C., Chartier, M.P., Roig, F.A. et al. Dynamics of erosion processes in the tropics: a dendrogeomorphological approach in an Ultisol of southeastern Brazil. Plant Soil 443, 369–386 (2019). https://doi.org/10.1007/s11104-019-04227-2

Download citation

Keywords

  • Exposed root
  • Dating
  • Dendrochronology
  • Piping
  • Gully