The soil C:N:P stoichiometry is more sensitive than the leaf C:N:P stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation

Abstract

Aims

The atmospheric deposition of N has rapidly increased in recent years, but whether the C:N:P stoichiometry of older leaves, litter and the mineral layer of soil is more sensitive to N deposition than the C:N:P stoichiometry of new leaves remains unclear.

Methods

An experiment simulating N deposition (0, 20, 40, and 80 kg·N·ha−1·year−1) was established in a Pinus koraiensis plantation in Northeast China in May 2014. In September 2017, the nutrient concentrations in new and older leaves, litter, and the 0–10 cm and 10–20 cm soil mineral layers were determined.

Results

The treatments and leaf stages had no significant interaction effect on the leaf C:N:P stoichiometry. The coefficient of variation among the treatments found for new leaves was significantly lower than that found for the 10–20 cm soil layer, and no significant difference was found among the three leaf stages or among the two soil layers.

Conclusions

The C:N:P stoichiometry of older leaves and litter is not more sensitive to N addition than that of new leaves, and the soil C:N:P stoichiometry responds earlier to N addition than the leaf C:N:P stoichiometry. For the forest ecosystem factors associated with stoichiometric traits, the soil C:N:P stoichiometry might be a better indicator of variations under the increased N:P deposition ratio obtained with N deposition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386. https://doi.org/10.2307/1311067

    Article  Google Scholar 

  2. Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol S 39:153–170. https://doi.org/10.1146/annurev.ecolsys.39.110707.173515

    Article  Google Scholar 

  3. Bui EN, Henderson BL (2013) C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 373:553–568. https://doi.org/10.1007/s11104-013-1823-9

    Article  CAS  Google Scholar 

  4. Cao Y, Chen Y (2017) Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia) plantations on the loess plateau, China. Trees-Struct Funct 31(5):1559–1570. https://doi.org/10.1007/s00468-017-1569-8

    Article  CAS  Google Scholar 

  5. Chapin FS, Vitousek PM, Cleve KV (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58. https://doi.org/10.1086/284466

    Article  Google Scholar 

  6. Coyle DR, Coleman MD (2005) Forest production responses to irrigation and fertilization are not explained by shifts in allocation. Forest Ecol Manag 208(1–3):137–152. https://doi.org/10.1016/j.foreco.2004.11.022

    Article  Google Scholar 

  7. Crowley KF, McNeil BE, Lovett GM, Canham CD, Driscoll CT, Rustad LE, Denny E, Hallett RA, Arthur MA, Boggs JL, Goodale CL, Kahl JS, McNulty SG, Ollinger SV, Pardo LH, Schaberg PG, Stoddard JL, Weand MP, Weathers KC (2012) Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems 15(6):940–957. https://doi.org/10.1007/s10021-012-9550-2

    Article  CAS  Google Scholar 

  8. Demoling F, Nilsson LO, Baath E (2008) Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40(2):370–379. https://doi.org/10.1016/j.soilbio.2007.08.019

    Article  CAS  Google Scholar 

  9. Deng M, Liu L, Sun Z, Piao S, Ma Y, Chen Y, Wang J, Qiao C, Wang X, Li P (2016) Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations. New Phytol 212(4):1019–1029. https://doi.org/10.1111/nph.14083

    Article  CAS  PubMed  Google Scholar 

  10. Deng Q, Hui D, Dennis S, Reddy KC (2017) Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Glob Ecol Biogeogr 26(6):713–728. https://doi.org/10.1111/geb.12576

    Article  Google Scholar 

  11. Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186(3):593–608. https://doi.org/10.1111/j.1469-8137.2010.03214.x

    Article  CAS  PubMed  Google Scholar 

  12. Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015) Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 392(1–2):127–138. https://doi.org/10.1007/s11104-015-2444-2

    Article  CAS  Google Scholar 

  13. Fang Y, Zhu W, Gundersen P, Mo J, Zhou G, Yoh M (2008) Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems 12(1):33–45. https://doi.org/10.1007/s10021-008-9203-7

    Article  CAS  Google Scholar 

  14. Fife DN, Nambiar EKS, Saur E (2008) Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiol 28(2):187–196. https://doi.org/10.1093/treephys/28.2.187

    Article  CAS  PubMed  Google Scholar 

  15. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226. https://doi.org/10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  16. Garrish V, Cernusak LA, Winter K, Turner BL (2010) Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, Ficus insipida. J Exp Bot 61(13):3735–3748. https://doi.org/10.1093/jxb/erq183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goswami S, Fisk MC, Vadeboncoeur MA, Garrison-Johnston M, Yanai RD, Fahey TJ (2018) Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99(2):438–449. https://doi.org/10.1002/ecy.2100

    Article  PubMed  Google Scholar 

  18. Gundale MJ, From F, Bach LH, Nordin A (2014) Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Glob Chang Biol 20(1):276–286. https://doi.org/10.1111/gcb.12422

    Article  PubMed  Google Scholar 

  19. Güsewell S (2005) High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytol 166(2):537–550. https://doi.org/10.1111/j.1469-8137.2005.01320.x

    Article  CAS  PubMed  Google Scholar 

  20. Härdtle W, von Oheimb G, Niemeyer M, Niemeyer T, Assmann T, Meyer H (2007) Nutrient leaching in dry heathland ecosystems: effects of atmospheric deposition and management. Biogeochemistry 86(2):201–215. https://doi.org/10.1007/s10533-007-9156-5

    Article  CAS  Google Scholar 

  21. Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322. https://doi.org/10.1038/ngeo844

    Article  CAS  Google Scholar 

  22. Knorr (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86(12):3252–3257. https://doi.org/10.1890/05-0150

    Article  Google Scholar 

  23. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450. https://doi.org/10.2307/2404783

    Article  Google Scholar 

  24. Lal R (2005) Forest soils and carbon sequestration. Forest Ecol Manag 220(1–3):242–258. https://doi.org/10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  25. Li Y, Niu S, Yu G (2016) Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Glob Chang Biol 22(2):934–943. https://doi.org/10.1111/gcb.13125

    Article  PubMed  Google Scholar 

  26. Li Y, Tian D, Yang H, Niu S, Luo Y (2018) Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Funct Ecol 32(1):95–105. https://doi.org/10.1111/1365-2435.12975

    Article  Google Scholar 

  27. Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 494(7438):459–462. https://doi.org/10.1038/nature11917

    Article  CAS  Google Scholar 

  28. Long M, Wu HH, Smith MD, La Pierre KJ, Lü XT, Zhang HY, Han XG, Yu Q (2016) Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant Soil 408(1–2):475–484. https://doi.org/10.1007/s11104-016-3022-y

    Article  CAS  Google Scholar 

  29. Lu X, Mao Q, Gilliam FS, Luo Y, Mo J (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob Chang Biol 20(12):3790–3801. https://doi.org/10.1111/gcb.12665

    Article  PubMed  Google Scholar 

  30. Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ (2015) Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang Biol 21(8):3169–3180. https://doi.org/10.1111/gcb.12904

    Article  PubMed  Google Scholar 

  31. Magill AH, Aber JD (1998) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation. Plant Soil 203:301–311. https://doi.org/10.1023/A:1004367000041

    Article  CAS  Google Scholar 

  32. Magill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler P (2000) Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 3(3):238–253. https://doi.org/10.1007/s100210000023

    Article  Google Scholar 

  33. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cy 22:GB4026. https://doi.org/10.1029/2008gb003240

    Article  Google Scholar 

  34. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of organic carbon. Nature 419:915–917. https://doi.org/10.1038/nature01136

    Article  CAS  Google Scholar 

  35. Peñuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth's life system. Glob Chang Biol 18(1):3–6. https://doi.org/10.1111/j.1365-2486.2011.02568.x

    Article  Google Scholar 

  36. Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934. https://doi.org/10.1038/ncomms3934

    Article  CAS  PubMed  Google Scholar 

  37. Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Laurence J, Leake JR, Leith LD, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmore MR, Power SA (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18(4):1197–1215. https://doi.org/10.1111/j.1365-2486.2011.02590.x

    Article  Google Scholar 

  38. Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2007) Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Glob Chang Biol 14:142–153. https://doi.org/10.1111/j.1365-2486.2007.01465.x

    Article  Google Scholar 

  39. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. P Natl Acad Sci USA 101(30):11001–11006. https://doi.org/10.1073/pnas.0403588101

    Article  CAS  Google Scholar 

  40. Santiago LS, Wright SJ, Harms KE, Yavitt JB, Korine C, Garcia MN, Turner BL (2012) Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. J Ecol 100:309–316. https://doi.org/10.1111/j.1365-2745.2011.01904.x

    Article  CAS  Google Scholar 

  41. Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol 14(1):33–47. https://doi.org/10.1016/j.ppees.2011.08.002

    Article  Google Scholar 

  42. Sardans J, Alonso R, Janssens IA, Carnicer J, Vereseglou S, Rillig MC, Fernández-Martínez M, Sanders TGM, Peñuelas J, Tjoelker M (2016) Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Funct Ecol 30(5):676–689. https://doi.org/10.1111/1365-2435.12541

    Article  Google Scholar 

  43. Schreeg LA, Santiago LS, Wright SJ, Turner BL (2014) Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology 95(8):2062–2068. https://doi.org/10.1890/13-1671.1

    Article  CAS  PubMed  Google Scholar 

  44. Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  45. Song L, Tian P, Zhang J, Jin G (2017) Effects of 3 years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of Northeast China. Sci Total Environ 609:1303–1311. https://doi.org/10.1016/j.scitotenv.2017.08.017

    Article  CAS  PubMed  Google Scholar 

  46. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  47. Sun Z, Liu L, Peng S, Peñuelas J, Zeng H, Piao S (2016) Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation. Ecosystems 19(4):698–709. https://doi.org/10.1007/s10021-016-9962-5

    Article  CAS  Google Scholar 

  48. Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010) Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry 98(1–3):139–151. https://doi.org/10.1007/s10533-009-9382-0

    Article  CAS  Google Scholar 

  49. Townsend AR, Cleveland CC, Asner GP, Bustamamte MMC (2007) Controls over foliar N:P ratios in tropical forests. Ecology 88:107–118. https://doi.org/10.1890/0012-9658(2007)88[107:COFNRI]2.0.CO;2

    Article  PubMed  Google Scholar 

  50. Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x

    Article  Google Scholar 

  51. Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220. https://doi.org/10.1890/11-0416.1

    Article  Google Scholar 

  52. Walker TW, Syers JK (1976) Fate of phosphorus during pedogenesis. Geoderma 15:1–19. https://doi.org/10.1016/0016-7061(76)90066-5

    Article  CAS  Google Scholar 

  53. Wang M, Moore TR (2014) Carbon, nitrogen, phosphorus, and potassium stoichiometry in an Ombrotrophic peatland reflects plant functional type. Ecosystems 17(4):673–684. https://doi.org/10.1007/s10021-014-9752-x

    Article  CAS  Google Scholar 

  54. Wright (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827. https://doi.org/10.1038/nature02403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan Z, Kim N, Han W, Guo Y, Han T, Du E, Fang J (2015) Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant Soil 388(1–2):147–155. https://doi.org/10.1007/s11104-014-2316-1

    Article  CAS  Google Scholar 

  56. You C, Wu F, Yang W, Xu Z, Tan B, Yue K, Ni X (2018a) Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: a global meta-analysis. Environ Pollut 241:740–749. https://doi.org/10.1016/j.envpol.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  57. You C, Wu F, Yang W, Xu Z, Tan B, Zhang L, Yue K, Ni X, Li H, Chang C, Fu C (2018b) Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen deposition? Sci Total Environ 645:733–742. https://doi.org/10.1016/j.scitotenv.2018.07.186

    Article  CAS  PubMed  Google Scholar 

  58. Yu Q, Chen Q, Elser JJ, He N, Wu H, Zhang G, Wu H, Zhang G, Wu J, Bai Y, Han X (2010) Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol Lett 13(11):1390–1399. https://doi.org/10.1111/j.1461-0248.2010.01532.x

    Article  PubMed  Google Scholar 

  59. Yu D, Zhou L, Zhou W, Ding H, Wang Q, Wang Y, Wu X, Dai L (2011) Forest management in Northeast China: history, problems, and challenges. Environ Manag 48(6):1122–1135. https://doi.org/10.1007/s00267-011-9633-4

    Article  Google Scholar 

  60. Yu Q, Wilcox K, La Pierre K, Knapp AK, Han XG, Smith MD (2015) Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology 96:2328–2335. https://doi.org/10.1890/14-1897.1

    Article  PubMed  Google Scholar 

  61. Yuan Z, Chen HYH (2015) Negative effects of fertilization on plant nutrient resorption. Ecology 96(2):373–380. https://doi.org/10.1890/14-0140.1

    Article  CAS  PubMed  Google Scholar 

  62. Yue K, Fornara DA, Yang W, Peng Y, Li Z, Wu F, Peng C (2017) Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Glob Chang Biol 23(6):2450–2463. https://doi.org/10.1111/gcb.13569

    Article  PubMed  Google Scholar 

  63. Zhang Y (2011) Physicochemical analysis of soil, water and plant. China Forestry Publishing House, Beijing

    Google Scholar 

  64. Zhang H, Wu H, Yu Q, Wang Z, Wei C, Long M, Kattge J, Smith M, Han X (2013) Sampling date, leaf age and root size: implications for the study of plant C:N:P stoichiometry. PLoS One 8(4):e60360. https://doi.org/10.1371/journal.pone.0060360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Q, Xie J, Lyu M, Xiong D, Wang J, Chen Y, Li Y, Wang M, Yang Y (2017) Short-term effects of soil warming and nitrogen addition on the N:P stoichiometry of Cunninghamia lanceolata in subtropical regions. Plant Soil 411(1–2):395–407. https://doi.org/10.1007/s11104-016-3037-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Fundamental Research Funds for Central Universities (2572017EA02).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangze Jin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tim S. George.

Electronic supplementary material

ESM 1

(DOCX 909 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Song, L. & Jin, G. The soil C:N:P stoichiometry is more sensitive than the leaf C:N:P stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant Soil 442, 183–198 (2019). https://doi.org/10.1007/s11104-019-04165-z

Download citation

Keywords

  • Nitrogen deposition
  • Nitrogen limitation
  • Stoichiometric traits
  • Soil available nutrients
  • Stoichiometric homeostasis
  • Evergreen conifer