Skip to main content

Bacterial communities differ between plant species and soil type, and differentially influence seedling establishment on serpentine soils

Abstract

Background and aim

Root-associated microbial communities influence plant phenotype, growth and local abundance, yet the factors that structure these microbial communities are still poorly understood. California landscapes contain serpentine soils, which are nutrient-poor and high in heavy metals, and distinct from neighboring soils making them ideal for studying the factors that structure root microbiomes and their functions.

Method

Here, we surveyed the rhizoplane of serpentine-indifferent plants, which grow on and off serpentine soil, to determine the relative influence of plant identity and soil chemistry on rhizoplane microbial community structure using 16S rRNA metabarcoding. Additionally, we experimentally examined if serpentine vs. non-serpentine microorganisms differentially affected plant growth in serpentine soil.

Results

Rhizoplane bacterial communities differed among plant species, soil types, and the interaction between them in both the field and experimental soils. In the experiment, soil microbial community source influenced seedling survival, but plant growth phenotypes were largely invariant to microbial community with a few exceptions.

Conclusions

Rhizosplane bacterial species composition differed between plant species and soil types, and Amplicon Sequence Variants (ASVs) from the phyla Acidobacteria and Proteobacteria (Genus: Microvirga) were characteristic of serpentine soils. While soil microbial community composition influenced seedling survival in the current study, further study is required to disentangle the role of microbial associations and plant tolerance to serpentine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ai C, Zhang S, Zhang X, Guo D, Zhou W, Huang S (2018) Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319:156–166. https://doi.org/10.1016/j.geoderma.2018.01.010

    CAS  Article  Google Scholar 

  2. Aleklett K, Leff JW, Fierer N, Hart M (2015) Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ 3:e804. https://doi.org/10.7717/peerj.804

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101:219–224. https://doi.org/10.3732/ajb.1300349

    Article  PubMed  Google Scholar 

  4. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

    CAS  Article  PubMed  Google Scholar 

  5. Baker NR, Khalili B, Martiny JBH, Allison SD (2018) Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California. Ecology 99:1441–1452. https://doi.org/10.1002/ecy.2345

    Article  PubMed  Google Scholar 

  6. Barillot CDC, Sarde C-O, Bert V, Tarnaud E, Cochet N (2012) A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol 63:471–476. https://doi.org/10.1007/s13213-012-0491-y

    CAS  Article  Google Scholar 

  7. Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241. https://doi.org/10.1038/ismej.2013.104

  8. Bartram AK, Jiang X, Lynch MDJ, Masella AP, Nicol GW, Dushoff J, Neufeld JD (2014) Exploring links between pH and bacterial community composition in soils from the Craibstone experimental farm. FEMS Microbiol Ecol 87:403–415. https://doi.org/10.1111/1574-6941.12231

    CAS  Article  PubMed  Google Scholar 

  9. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:1–12. https://doi.org/10.3389/fmicb.2013.00201

    Article  Google Scholar 

  10. Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730

    Article  Google Scholar 

  11. Branco S (2009) Are oaks locally adapted to serpentine soils? Northeast Nat 16:329–340. https://doi.org/10.1656/045.016.0524

    Article  Google Scholar 

  12. Bray JR, Curtis JT (1957) An ordination of the upland Forest communities of southern Wisconsin. Ecol Monogr 27:325–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  13. Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7:1–10. https://doi.org/10.1093/aobpla/plv030

    CAS  Article  Google Scholar 

  14. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016a) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP (2016b) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5:1492. https://doi.org/10.12688/f1000research.8986.2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. https://doi.org/10.1073/pnas.1000080107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1000080107

    CAS  Article  PubMed  Google Scholar 

  17. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731. https://doi.org/10.1371/journal.pone.0055731

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65:1627–1637. https://doi.org/10.1007/s13213-014-1002-0

    CAS  Article  PubMed  Google Scholar 

  19. Christian N, Herre EA, Mejia LC, Clay K (2017) Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc R Soc B Biol Sci 284:1–8. https://doi.org/10.1098/rspb.2017.0641

    CAS  Article  Google Scholar 

  20. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313X.1998.00343.x

    CAS  Article  PubMed  Google Scholar 

  21. Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:1–16. https://doi.org/10.3389/fpls.2013.00442

    Article  Google Scholar 

  22. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y, Gómez-Aparicio L (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J Ecol 102:845–856. https://doi.org/10.1111/1365-2745.12232

    Article  PubMed  PubMed Central  Google Scholar 

  23. Delgado-Baquerizo M, Singh BK, Trivedi C et al (2017) Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol Biochem 111:10–14. https://doi.org/10.1016/j.soilbio.2017.03.013

    CAS  Article  Google Scholar 

  24. Deora A, Hashidoko Y, Islam MT, Tahara S (2005) Antagonistic rhizoplane bacteria induce diverse morphological alterations in Peronosporomycete hyphae during in vitro interaction. Eur J Plant Pathol 112:311–322. https://doi.org/10.1007/s10658-005-4753-4

    Article  Google Scholar 

  25. Dillon JG, Carlin M, Gutierrez A, Nguyen V, McLain N (2013) Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA sur, Mexico. Front Microbiol 4:1–13. https://doi.org/10.3389/fmicb.2013.00399

    Article  Google Scholar 

  26. Dilly O, Bloem J, Vos A, Munch JC (2004) Bacterial diversity in agricultural soils during litter decomposition. Appl Environ Microbiol 70:468–474. https://doi.org/10.1128/AEM.70.1.468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Doherty JH, Ji B, Casper BB (2008) Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils. Environ Pollut 151:593–598. https://doi.org/10.1016/j.envpol.2007.04.002

    CAS  Article  PubMed  Google Scholar 

  28. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920. https://doi.org/10.1073/pnas.1414592112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115. https://doi.org/10.1146/annurev.energy.30.050504.144212

    Article  Google Scholar 

  30. Erlandson S, Wei X, Savage J, Cavender-Bares J, Peay K (2018) Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Mol Ecol 27:2007–2024. https://doi.org/10.1111/mec.14576

    Article  PubMed  Google Scholar 

  31. Espeland EK, Rice AKJ (2007) Facilitation across stress gradients: the importance of local adaptation. Notes Ecol 88:2404–2409

    CAS  Article  Google Scholar 

  32. Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21:2082–2094. https://doi.org/10.1111/gcb.12816

    Article  PubMed  Google Scholar 

  33. Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 201717617:E1157–E1165. https://doi.org/10.1073/pnas.1717617115

    CAS  Article  Google Scholar 

  34. Fitzsimons MS, Miller RM (2010) Serpentine soil has little influence on the root-associated microbial community composition of the serpentine tolerant grass species Avenula sulcata. Plant Soil 330:393–405. https://doi.org/10.1007/s11104-009-0213-9

    CAS  Article  Google Scholar 

  35. Gehring CA, Sthultz CM, Flores-Rentería L, Whipple AV, Whitham TG (2017) Tree genetics defines fungal partner communities that may confer drought tolerance. Proc Natl Acad Sci 114:11169–11174. https://doi.org/10.1073/pnas.1704022114

    CAS  Article  PubMed  Google Scholar 

  36. Giamminola EM, Strati F, Cardinale M et al (2017) The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacteriumspp. And Staphylococcus spp. with potential plant-growth promoting activities. Plant Soil 422:81–99. https://doi.org/10.1007/s11104-017-3182-4

    CAS  Article  Google Scholar 

  37. Glick BR (2012) Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

  38. Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, Bruns G, Yarza P, Peplies J, Westram R, Ludwig W (2017) 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol 261:169–176. https://doi.org/10.1016/j.jbiotec.2017.06.1198

    CAS  Article  PubMed  Google Scholar 

  39. Govindasamy V, Senthilkumar M, Magheshwaran V et al (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant growth and Health promoting Bacteria, pp 333–364

    Chapter  Google Scholar 

  40. Hawkes CV, Keitt TH (2015) Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett 18:612–625. https://doi.org/10.1111/ele.12451

    Article  PubMed  Google Scholar 

  41. Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796. https://doi.org/10.1128/AEM.71.7.3786-3796.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of Bacteria in the rhizosphere soils of Polygonum Pubescens and their potential in promoting growth and cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16:321–333. https://doi.org/10.1080/15226514.2013.773283

    CAS  Article  PubMed  Google Scholar 

  43. Jorquera MA, Maruyama F, Ogram AV, Navarrete OU, Lagos LM, Inostroza NG, Acuña JJ, Rilling JI, de la Luz Mora M (2016) Rhizobacterial community structures associated with native plants grown in Chilean extreme environments. Microb Ecol 72:633–646. https://doi.org/10.1007/s00248-016-0813-x

    CAS  Article  PubMed  Google Scholar 

  44. Kassambara A, Kosinski M (2018) Survminer: drawing survival curves using “ggplot2”. R package version 0.4.3

  45. Kelly DP, McDonald IR, Wood AP (2014) The family Methylobacteriaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Spring, Berlin, Heidelberg, pp 313–340

  46. Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate Solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Phosphate solubilizing microorganisms, pp 31–62

    Google Scholar 

  47. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. https://doi.org/10.5137/1019-5149.JTN.14036-15.1

  48. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992. https://doi.org/10.1111/j.1461-0248.2008.01209.x

    Article  PubMed  Google Scholar 

  49. Lally RD, Galbally P, Moreira AS, Spink J, Ryan D, Germaine KJ, Dowling DN (2017) Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front Plant Sci 8:1–10. https://doi.org/10.3389/fpls.2017.02193

    Article  Google Scholar 

  50. Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224. https://doi.org/10.1111/j.1469-8137.2011.03790.x

    Article  PubMed  Google Scholar 

  51. Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci 109:14058–14062. https://doi.org/10.1073/pnas.1202319109

    Article  PubMed  Google Scholar 

  52. Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, de Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D, Baggs EM, Fierer N (2018) Predicting the structure of soil communities from plant community taxonomy , phylogeny , and traits. ISME J 12:1794–1805. https://doi.org/10.1038/s41396-018-0089-x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2:18–22.

  54. Luo G, Shi Z, Wang H, Wang G (2012) Skermanella stibiiresistens sp. nov., a highly antimony-resistant bacterium isolated from coal-mining soil, and emended description of the genus Skermanella. Int J Syst Evol Microbiol 62:1271–1276. https://doi.org/10.1099/ijs.0.033746-0

    CAS  Article  PubMed  Google Scholar 

  55. Maignien L, DeForce EA, Chafee ME et al (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5:e00682–e00613. https://doi.org/10.1128/mBio.00682-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    CAS  Article  PubMed  Google Scholar 

  58. Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6:1–15. https://doi.org/10.3389/fmicb.2015.01450

    Article  Google Scholar 

  59. Msaddak A, Imperial J, Ruiz-Argüeso T et al (2017) Members of microvirga and Bradyrhizobium genera are native endosymbiotic bacteria nodulating Lupinus luteus in northern Tunisian soils. FEMS Microbiol Ecol 93:1–11. https://doi.org/10.1093/femsec/fix068

    CAS  Article  Google Scholar 

  60. Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Cell 82:3698–3710. https://doi.org/10.1128/AEM.01055-16 Editor

    CAS  Article  Google Scholar 

  61. Oksanen J, Blanchet FG, Friendly M, et al (2018) Vegan: community ecology package. R package version 2.5–3

  62. Packer A, Clay K (2003) Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology 84:108–119. https://doi.org/10.1890/0012-9658(2003)084[0108:SPAPSS]2.0.CO;2

  63. Pickles BJ, Twieg BD, O’Neill GA et al (2015) Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. New Phytol 207:858–871. https://doi.org/10.1111/nph.13360

    Article  PubMed  Google Scholar 

  64. Porter SS, Rice KJ (2012) Trade-offs, spatial heterogeneity, and the maintenance of microbial diversity. Evolution (N Y) 67:599–608. https://doi.org/10.1111/j.1558-5646.2012.01788.x

    Article  Google Scholar 

  65. Porter SS, Chang PL, Conow CA et al (2016) Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. Isme J 11:248

    Article  Google Scholar 

  66. Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML (2017) Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J 11:248–262. https://doi.org/10.1038/ismej.2016.88

    CAS  Article  PubMed  Google Scholar 

  67. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Revillini D, Gehring CA, Johnson NC (2016) The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct Ecol 30:1086–1098. https://doi.org/10.1111/1365-2435.12668

    Article  Google Scholar 

  69. Rodríguez-Echeverría S, Lozano YM, Bardgett RD (2016) Influence of soil microbiota in nurse plant systems. Funct Ecol 30:30–40. https://doi.org/10.1111/1365-2435.12594

    Article  Google Scholar 

  70. Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22:939–946. https://doi.org/10.1101/gr.128124.111.22

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, Lajeunesse MJ, Milligan BG, Karst J, Hoeksema JD (2016) Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol 16:1–15. https://doi.org/10.1186/s12862-016-0698-9

    Article  Google Scholar 

  72. Safford AHD, Viers JH, Harrison SP (2005) Serpentine endemism in the California flora: a database of serpentine affinity. Madrono 52:222–257

    Article  Google Scholar 

  73. Sambatti JBM, Rice KJ (2006) Local Adaptation, Patterns of Selection, and Gene Flow in the Californian Serpentine Sunflower (Helianthus exilis). Evolution 60:696–710 https://doi.org/10.1554/05-479.1

  74. Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci 112:E5013–E5020. https://doi.org/10.1073/pnas.1505765112

    CAS  Article  PubMed  Google Scholar 

  75. Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244. https://doi.org/10.1016/S0929-1393(03)00027-1

    Article  Google Scholar 

  76. Schechter SP, Bruns TD (2008) Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Mol Ecol 17:3198–3210. https://doi.org/10.1111/j.1365-294X.2008.03828.x

    CAS  Article  PubMed  Google Scholar 

  77. Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. https://doi.org/10.1093/bioinformatics/btq706

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286. https://doi.org/10.3389/fmicb.2015.01286

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D (2018) Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum-contaminated soils. Int J Environ Res Public Health 15:2168. https://doi.org/10.3390/ijerph15102168

    CAS  Article  PubMed Central  Google Scholar 

  80. Smith DS, Schweitzer JA, Turk P, Bailey JK, Hart SC, Shuster SM, Whitham TG (2012) Soil-mediated local adaptation alters seedling survival and performance. Plant Soil 352:243–251. https://doi.org/10.1007/s11104-011-0992-7

    CAS  Article  Google Scholar 

  81. Tak HI, Ahmad F, Babalola OO (2013) Advances in the Application of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Heavy Metals. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology. Springer Science+Business Media New York, pp 33–52

  82. Tapase SR, Kodam KM (2018) Assessment of arsenic oxidation potential of microvirga indica S-MI1b sp. nov. in heavy metal polluted environment. Chemosphere 195:1–10. https://doi.org/10.1016/j.chemosphere.2017.12.022

    CAS  Article  PubMed  Google Scholar 

  83. The Calflora Database (2016) CalFlora: information on California plants for education, Research and Conservation. In: Berkeley, Calif. Calflora Database. https://www.calflora.org/. Accessed 20 Jun 2008

  84. Therneau TM (2015) A package for survival analysis in S. version 2.38

  85. Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126. https://doi.org/10.1016/j.tree.2006.11.007

    Article  PubMed  Google Scholar 

  86. Touceda-González M, Kidd PS, Smalla K, Prieto-Fernández A (2018) Bacterial communities in the rhizosphere of different populations of the Ni-hyperaccumulator Alyssum serpyllifolium and the metal-excluder Dactylis glomerata growing in ultramafic soils. Plant Soil 431:317–332. https://doi.org/10.1007/s11104-018-3767-6

    CAS  Article  Google Scholar 

  87. UNL Environmental Health and Safety (2018) Autoclave operation and performance testing. In: Univ. Nebraska, Lincoln Environ. Heal. Saf. - Safe Oper. Proced. https://ehs.unl.edu/sop. Accessed 1 June 2016

  88. Videira SS, De Araujo JLS, Da Silva Rodrigues L et al (2009) Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293:11–19. https://doi.org/10.1111/j.1574-6968.2008.01475.x

    CAS  Article  PubMed  Google Scholar 

  89. Wagg C, Husband BC, Green SS et al (2011) Soil microbial communities from an elevational cline differ in their effect on conifer seedling growth. Plant Soil 340:491–504. https://doi.org/10.1007/s11104-010-0621-x

    CAS  Article  Google Scholar 

  90. Wood JL, Zhang C, Mathews ER, Tang C, Franks AE (2016) Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Sci Rep 6:1–10. https://doi.org/10.1038/srep36067

    CAS  Article  Google Scholar 

  91. Wright ES (2016) Using DECIPHER v2.0 to analyze big biological sequence data in R. R J 8:352–359. V12242009

  92. Wright JW, Stanton ML (2007) Collinsia sparsiflora in serpentine and nonserpentine habitats: using F2 hybrids to detect the potential role of selection in ecotypic differentiation. New Phytol 173:354–366. https://doi.org/10.1111/j.1469-8137.2006.01925.x

    Article  PubMed  Google Scholar 

  93. Wright JW, Stanton ML, Scherson R (2006) Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol Ecol Res 8:1–21

    Google Scholar 

  94. Wu Y, Zeng J, Zhu Q, Zhang Z, Lin X (2017) PH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci Rep 7:1–7. https://doi.org/10.1038/srep40093

    CAS  Article  Google Scholar 

  95. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:643–648. https://doi.org/10.1093/nar/gkt1209

    CAS  Article  Google Scholar 

  96. Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 105:162–173. https://doi.org/10.1016/j.plaphy.2016.04.025

    CAS  Article  PubMed  Google Scholar 

  97. Zhu Y-G, Ding K, Duan G-L et al (2018) DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol Ecol 94:1–10. https://doi.org/10.1093/femsec/fiy026

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was performed (in part) at the University of California Natural Reserve System (McLaughlin Natural Reserve) Reserve DOI: (https://doi.org/10.21973/N3W08D). We thank Cathy Koehler for assistance at McLaughlin Natural Reserve, John Bailey for assistance at Hopland Reserve, Shenwen Gu, the Vannette Lab, and the UC Davis Data Science Initiative for their help in the data collection and analysis process as well as manuscript feedback. The UC Davis Genome center performed sequencing.

Funding

This work was supported by the Henry A. Jastro Graduate Research Award, the UC Davis Natural Reserve System Graduate Student Research Grant and the California Native Plant Society with awards to AI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandria N. Igwe.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Manuel Delgado-Baquerizo.

Electronic supplementary material

ESM 1

(CSV 2860 kb)

ESM 2

(CSV 120 kb)

ESM 3

(CSV 170 kb)

ESM 4

(PDF 15.4 mb)

ESM 5

(PDF 113 kb)

ESM 6

(PDF 51 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Igwe, A.N., Vannette, R.L. Bacterial communities differ between plant species and soil type, and differentially influence seedling establishment on serpentine soils. Plant Soil 441, 423–437 (2019). https://doi.org/10.1007/s11104-019-04135-5

Download citation

Keywords

  • Plant-microbe interaction
  • Bodenvag
  • Biodiversity
  • Rhizoplane
  • Bacterial community
  • Plant-soil feedback