Skip to main content

Advertisement

Log in

Chloride transport at plant-soil Interface modulates barley cd tolerance

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Cadmium (Cd) is a toxic metal in soils and its accumulation in plants poses severe problems to agricultural production and human health. Most of research has focused on the Cd toxicity to plants, but reports on Cd co-transport and regulation by the major counter ion Chloride (Cl) is limited. This study aims to understand the mechanisms of the interaction between soil Cl and phytol-toxicity of Cd.

Methods

We utilised soil chemical, plant physiological, biophysical, and molecular approaches to test the hypothesis that Cl transport increases the mobility and phytol-toxicity of Cd to barley.

Results

Cd-sensitive Gairdner utilised high amount of Cl from soil for optimal growth and yield in the control, but this also caused higher tissue Cd uptake and significantly affected photosynthesis in treatments of Cd-Cl combinations. Net ion fluxes from the root mature zone in Cd treatments and relative expression of transporter genes exhibited striking difference between two genotypes. Our results also highlighted evidence that Cd sensitivity is related to higher Cl and Cd2+ uptake and lower capacity to regulate root ion homeostasis and gene expression.

Conclusions

We present a new finding that soil Cl and Cd availability and Cd uptake and its interaction with other ions play a major role in barley Cd tolerance. These findings will guide future breeding for low Cl uptake genotypes to reduce Cd accumulation for barley grown in Cd contaminated soils and for the economically sound and cleaner production of barley for the global feed, food and brewery industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arthur E, Crews H, Morgan C (2000) Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. Int J Phytorem 2:1–21

    Article  Google Scholar 

  • Becker D, Hoth S, Ache P, Wenkel S, Roelfsema M, Meyerhoff O, Hartung W, Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554:119–126

    Article  CAS  PubMed  Google Scholar 

  • Cai SG, Chen G, Wang YY, Huang YQ, Marchant B et al (2017) Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiol 174:732–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvet R, Bourgeois S, Msaky J (1990) Some experiments on extraction of heavy metals present in soil. Int J Environ Anal Chem 39:31–45

    Article  CAS  Google Scholar 

  • Cao FB, Chen F, Sun HY, Zhang GP, Chen ZH, Wu FB (2014) Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics 15:611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZH, Newman I, Zhou MX, Mendham N, Zhang GP, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Chen ZH, Zhou MX, Newman I, Mendham N, Zhang GP, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Hills A, Lim CK, Blatt MR (2010) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J 61:816–825

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, Garcia-Mata C, Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt MR (2016) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytol 209:1456–1469

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL, Zhang G, Franks PJ, Nevo E, Blatt MR (2017) Molecular evolution of grass stomata. Trends Plant Sci 22:124–139

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J, Deckert J (2012) A common response to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing. Cell Commun Signal 6:191–204

    Article  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Davis R (1984) Cadmium-A complex environmental problem Part II. Experientia 40:117–126

    Article  CAS  PubMed  Google Scholar 

  • De Angeli A, Zhang J, Meyer S, Martinoia E (2013) AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat Commun 4:1804

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Eisenach C, Chen ZH, Grefen C, Blatt MR (2012) The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J 69:241–251

    Article  CAS  PubMed  Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta - Bioenerg 1706:158–164

    Article  CAS  Google Scholar 

  • Geilfus CM (2018) Review on the significance of chlorine for crop yield and quality. Plant Sci 270:114–122

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Buckley W, Bailey L, Selles F (1998) Cadmium accumulation in crops. Can J Plant Sci 78:1–17

    Article  CAS  Google Scholar 

  • Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX (2004) Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant Soil 258:241–248

    Article  CAS  Google Scholar 

  • Hou LY, Shi WM, Wei WH, Shen H (2011) Cadmium uptake, translocation, and tolerance in AHA1OX Arabidopsis thaliana. Biol Trace Elem Res 139:228–240

    Article  CAS  PubMed  Google Scholar 

  • Jiao W, Chen W, Chang AC, Page AL (2012) Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ Pollut 168:44–53

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. Place. CRC Press

  • Kalavrouziotis IK, Kostakioti E, Koukoulakis PH, Papadopoulos AH, Leotsinidis M, Sakazli E (2011) The impact of cl×cd interrelationship on planning wastewater reuse in cabbage. Water Air Soil Pollut 214:565–573

    Article  CAS  Google Scholar 

  • Lane TW, Morel FM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci U S A 97:4627–4631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YM, Chaney RL, Schneiter AA (1994) Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant Soil 167:275–280

    Article  CAS  Google Scholar 

  • Li S, Yu JL, Zhu MJ, Zhao FG, Luan S (2012) Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant Cell Environ 35:1998–2013

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Mak M, Babla M et al (2014) Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley. Front Plant Sci 5:634

    PubMed  PubMed Central  Google Scholar 

  • Liu XH, Fan Y, Mak M, Babla M, Holford P, Wang F, Chen G, Scott G, Wang G, Shabala S, Zhou M, Chen ZH (2017) QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genomics 18:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J, Naidu R (2012) Cadmium sorption and desorption in soils: a review. Crit Rev Environ Sci Technol 42:489–533

    Article  CAS  Google Scholar 

  • Lou YH, Luo HJ, Hu T, Li HY, Fu JM (2013) Toxic effects, uptake, and translocation of cd and Pb in perennial ryegrass. Ecotoxicology 22:207–214

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Mak M, Babla M, Xu SC, O’Carrigan A, Liu XH, Gong YM, Holford P, Chen ZH (2014) Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environ Exp Bot 98:1–12

    Article  CAS  Google Scholar 

  • Marschner H (2012) Marschner's mineral nutrition of higher plants. 3rd edition, Academic Press

  • McLaughlin MJ, Maier N, Rayment G, Sparrow L, Berg G, McKay A, Milham P, Merry RH, Smart M (1997) Cadmium in Australian potato tubers and soils. J Environ Qual 26:1644–1649

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Smolders E, Degryse F, Rietra R (2011) Uptake of metals from soil into vegetables. In: Dealing with contaminated sites. Springer, 325–367

  • Mei X, Li S, Li Q, Yang Y, Luo X, He B, Li H, Xu Z (2014) Sodium chloride salinity reduces cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for ca channels. Ecotoxicol Environ Saf 105:59–64

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Müller A, Giraudat J (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milham PJ (2008) The behaviour of cadmium in soil. PhD Thesis, University of Western Sydney

  • Mills RF, Krijger GC, Baccarini PJ, Hall J, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/co/cd/Pb subclass. Plant J 35:164–176

    Article  CAS  PubMed  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, SatohNagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nas S, Gokalp HY, Sahin Y (1993) K and ca content of fresh green tea, black tea, and tea residue determined by X-ray fluorescence analysis. Z Lebensm Unters Forsch 196:32–37

    Article  CAS  PubMed  Google Scholar 

  • Newman I (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    Article  CAS  PubMed  Google Scholar 

  • Newman I, Chen SL, Porterfield DM, Sun J (2012) Non-invasive flux measurements using mircosensors: theory, limitations, and systems. In: Shabala S, Cuin TA, eds. Plant Salt tolerance: methods and protocols. Springer science + business Media, 101–118

  • Norvell WA, Wu J, Hopkins DG, Welch RM (2000) Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci Soc Am J 64:2162–2168

    Article  CAS  Google Scholar 

  • O’Carrigan A, Hinde E, Lu N, Xu XQ, Duan H, Huang G, Mak M, Bellotti B, Chen ZH (2014) Effects of light irradiance on stomatal regulation and growth of tomato. Environ Exp Bot 98:65–73

    Article  CAS  Google Scholar 

  • O'Carrigan A, Babla M, Wang FF, Liu XH, Mak M, Thomas R, Bellotti B, Chen ZH (2014) Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments. Plant Physiol Biochem 82:105–115

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12

    Article  CAS  PubMed  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineros MA, Shaff JE, Kochian LV (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (2017) Chloride: essential micronutrient and multifunctional beneficial ion. J Exp Bot 68:359–367

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauve S, McBride M, Hendershot W (1998) Soil solution speciation of lead (II): effects of organic matter and pH. Soil Sci Soc Am J 62:618–621

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  PubMed  Google Scholar 

  • Song XQ, Liu LF, Jiang YJ, Zhang BC, Gao YP, Liu XL, Lin QS, Ling HQ, Zhou YH (2013) Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant 6:768–780

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang R, Liu Z, Ding Y, Li T (2013) Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii. J Plant Physiol 170:355–359

  • Sun HY, Chen ZH, Chen F, Xie LP, Zhang GP, Vincze E, Wu FB (2015) DNA microarray revealed and RNAi plants confirmed key genes conferring low cd accumulation in barley grains. BMC Plant Biol 15:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tack F, Verloo MG (1995) Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. Int J Environ Anal Chem 59:225–238

    Article  CAS  Google Scholar 

  • Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol 207:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Tukaj Z, Baścik-Remisiewicz A, Skowroński T, Tukaj C (2007) Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: a study at low and elevated CO2 concentration. Environ Exp Bot 60:291–299

    Article  CAS  Google Scholar 

  • Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009) A major quantitative trait locus controlling cadmium translocation in rice Oryza sativa. New Phytol 182:644–653

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107:16500–16505

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallejo AJ, Peralta ML, Santa-Maria GE (2005) Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Environ 28:850–862

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen ZH, Liu XH, Colmer TD, Zhou MX, Shabala S (2016) Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis. J Exp Bot 67:3747–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wege S, Gilliham M, Henderson SW (2017) Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J Exp Bot 68:3057–3069

    Article  CAS  PubMed  Google Scholar 

  • Weggler-Beaton K, McLaughlin MJ, Graham RD (2004) Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium. J Environ Qual 33:496–504

    Article  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  • Wu FB, Dong J, Qian QQ, Zhang GP (2005) Subcellular distribution and chemical form of cd and cd-Zn interaction in different barley genotypes. Chemosphere 60:1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    Article  CAS  Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Meixue Zhou (University of Tasmania) for seeds, Dr. Jianbin Zeng, Dr. Xiaohui Liu, for laboratory and glasshouse assistance, Linda Westmoreland, Sumedha Dharmaratne, Elizabeth Kabanoff, Renee Smith, Peter Lister, Rosie Freeman, Carol Adkins, Karen Stephenson, and Christopher Mitchell for excellent technical support. This work was supported by the Australian Research Council DECRA (DE140101143), Australian Department of Agriculture, and a Chinese 1000-Plan project to Zhong-Hua Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Hua Chen.

Additional information

Responsible Editor: Miroslav Nikolic.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, M., Zhang, M., Randall, D. et al. Chloride transport at plant-soil Interface modulates barley cd tolerance. Plant Soil 441, 409–421 (2019). https://doi.org/10.1007/s11104-019-04134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04134-6

Keywords

Navigation