Skip to main content
Log in

Paecilomyces variotii extracts (ZNC) enhance plant immunity and promote plant growth

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The crude extract of the endophyte Paecilomyces variotii known as ZhiNengCong (ZNC) has function of promoting plant growth and enhancing disease resistance and is widely used in China. Our study aims to evaluate the molecular mechanisms of plant growth promotion and disease protection.

Methods

We generated transcriptome profiles from ZNC-treated seedlings using RNA sequencing. The function of salicylic acid (SA) in ZNC-mediated immunity was examined using SA biosynthesis and signaling pathway mutants. The concentrations of nitrogen (N) and phosphorus (P) in seedlings under ZNC treatment were measured. The effect of ZNC on the level of the hormone auxin in roots was tested using transgenic plants containing DR5::GFP.

Results

ZNC exhibited ultrahigh activity in promoting plant growth and enhancing disease resistance, even at concentrations as low as 1–10 ng/ml. ZNC induced ROS accumulation, callose deposition, and expression of PR genes. SA biosynthesis and signaling pathways were required for the ZNC-mediated defense response. Moreover, in improving plant growth, ZNC increased the level of auxin in root tips and regulated the absorption of N and P.

Conclusion

According to these results, ZNC is a highly effective plant elicitor that promotes plant growth by inducing auxin accumulation at the root tip at low concentrations and enhances plant disease resistance by activating the SA signaling pathway at high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ZNC:

ZhiNengCong

SA:

Salicylic acid

PR:

Pathogenesis-related protein

N:

Nitrogen

P:

Phosphorus

ROS:

Reactive oxygen species

DAB:

3,3-diaminobenzidine

NBT:

Nitroblue tetrazolium

H2O2 :

Hydrogen peroxide

References

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  CAS  Google Scholar 

  • Bektas Y, Eulgem T (2014) Synthetic plant defense elicitors. Front Plant Sci 5:804. https://doi.org/10.3389/fpls.2014.00804

    Article  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  CAS  Google Scholar 

  • Cao Y, Sun D, Chen JX, Mei H, Ai H, Xu G, Chen Y, Ma LQ (2018) Phosphate transporter PvPht1;2 enhances phosphorus accumulation and plant growth without impacting arsenic uptake in plants. Environ Sci Technol 52:3975–3981

    Article  CAS  Google Scholar 

  • Casida JE (2009) Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol 22:609–619

    Article  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  Google Scholar 

  • Chu Z, Zhang M, Ding X, Wang Y, Wang Q, Wang H, Geng Q (2017) A strain of Paecilomyces Wan SJ1 and its application. CHN. Patent number ZL201510059660.1 filed February 5, 2015, issued July 11,2017

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  Google Scholar 

  • Ding T, Su B, Chen X, Xie S, Gu S, Wang Q, Huang D, Jiang H (2017) An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight. Front Microbiol 8:903. https://doi.org/10.3389/fmicb.2017.00903

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    Article  Google Scholar 

  • Enders TA, Strader LC (2015) Auxin activity: past, present, and future. Am J Bot 102:180–196

    Article  CAS  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotox Environ Ssfe 156:225–246

    Article  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  CAS  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  CAS  Google Scholar 

  • Gordy JW, Leonard BR, Blouin D, Davis JA, Stout MJ (2015) Comparative effectiveness of potential elicitors of plant resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in four crop plants. PLoS one 10(9):e0136689. https://doi.org/10.1371/journal.pone.0136689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH et al (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10:427–433

    Article  CAS  Google Scholar 

  • Hong CE, Jeong H, Jo SH, Jeong JC, Kwon SY, An D, Park JM (2016) A leaf-inhabiting endophytic bacterium, rhodococcus sp. KB6, enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata. J Microbiol Biotechnol 26:488–492

    Article  CAS  Google Scholar 

  • Huot B, Castroverde CDM, Velasquez AC, Hubbard E, Pulman JA, Yao J et al (2017) Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat Commun 8(1):1808. https://doi.org/10.1038/s41467-017-01674-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal A, Arshad M, Karthikeyan R, Gentry TJ, Rashid J, Ahmed I et al (2019) Diesel degrading bacterial endophytes with plant growth promoting potential isolated from a petroleum storage facility. 3 Biotech 9(1):35. https://doi.org/10.1007/s13205-018-1561-z

    Article  PubMed  Google Scholar 

  • Jelenska J, Davern SM, Standaert RF, Mirzadeh S, Greenberg JT (2017) Flagellin peptide flg22 gains access to long-distance trafficking in Arabidopsis via its receptor, FLS2. J Exp Bot 68:1769–1783

    Article  CAS  Google Scholar 

  • Jian SF, Liao Q, Song HX, Liu Q, Lepo JE, Guan CY, Zhang J, Ismail AM, Zhang Z (2018) NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation. Plant Physiol 178:1473–1488

    Article  CAS  Google Scholar 

  • Ju Y, Tian H, Zhang R, Zuo L, Jin G, Xu Q et al (2017) Overexpression of OsHSP18.0-CI enhances resistance to bacterial leaf streak in rice. Rice 10(1):12. https://doi.org/10.1186/s12284-017-0153-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091

    Article  CAS  Google Scholar 

  • Kalam S, Das SN, Basu A, Podile AR (2017) Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. J Basic Microbiol 57:376–385

    Article  CAS  Google Scholar 

  • Kempel A, Schmidt AK, Brandl R, Schädler M (2010) Support from the underground: induced plant resistance depends on arbuscular mycorrhizal fungi. Funct Ecol 24:293–300

    Article  Google Scholar 

  • Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2019) Role of plant growth promoting bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 436:325–345. https://doi.org/10.1007/s11104-019-03932-2

    Article  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  CAS  Google Scholar 

  • Li H, Guan Y, Dong Y, Zhao L, Rong S, Chen W, Lv M, Xu H, Gao X, Chen R, Li L, Xu Z (2018) Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLoS One 13(10):e0203505. https://doi.org/10.1371/journal.pone.0203505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  Google Scholar 

  • Miliute I, Buzaite O, Baniulis D, Stanys V (2015) Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste 102:465–478

    Article  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  CAS  Google Scholar 

  • Monjil MS, Nozawa T, Shibata Y, Takemoto D, Ojika M, Kawakita K (2015) Methanol extract of mycelia from Phytophthora infestans-induced resistance in potato. CR Biol 338:185–196

    Article  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance responses in maize. Mol Plant-Microbe Interact 11:643–658

    Article  CAS  Google Scholar 

  • Mou Z (2017) Extracellular pyridine nucleotides as immune elicitors in Arabidopsis. Plant Signal Behav 12(11):e1388977. https://doi.org/10.1080/15592324.2017.1388977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    Article  CAS  Google Scholar 

  • Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato JI, Kamiya Y, Koshiba T (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77:352–366

    Article  CAS  Google Scholar 

  • Nuhse TS, Bottrill AR, Jones AM, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  CAS  Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2009) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–128

    Article  Google Scholar 

  • Poncini L, Wyrsch I, Denervaud Tendon V, Vorley T, Boller T, Geldner N et al (2017) In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One 12(10):e0185808. https://doi.org/10.1371/journal.pone.0185808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J 68:100–113

    Article  CAS  Google Scholar 

  • Rodriguez-Salus M, Bektas Y, Schroeder M, Knoth C, Vu T, Roberts P, Kaloshian I, Eulgem T (2016) The synthetic elicitor 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid links plant immunity to hormesis. Plant Physiol 170:444–458

    Article  CAS  Google Scholar 

  • Rohini S, Aswani R, Kannan M, Sylas VP, Radhakrishnan EK (2018) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol 75:505–511

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MD, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  Google Scholar 

  • Shabanamol S, Sreekumar J, Jisha MS (2017) Bioprospecting endophytic diazotrophic Lysinibacillus sphaericus as biocontrol agents of rice sheath blight disease. 3. Biotech 7(5):337. https://doi.org/10.1007/s13205-017-0956-6

    Article  CAS  Google Scholar 

  • Shan W, Zhou Y, Liu H, Yu X (2018) Endophytic actinomycetes from tea plants (Camellia sinensis): isolation, abundance, antimicrobial. And plant-growth-promoting activities. Biomed res Int:1470305. https://doi.org/10.1155/2018/1470305

  • Simon S, Kubes M, Baster P, Robert S, Dobrev PI, Friml J et al (2013) Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol 200:1034–1048

    Article  CAS  Google Scholar 

  • Singh AK, Sharma RK, Sharma V, Singh T, Kumar R, Kumari D (2017) Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves. Vet World 10:510–516

    Article  CAS  Google Scholar 

  • Smith JM, Salamango DJ, Leslie ME, Collins CA, Heese A (2014) Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2. Plant Physiol 164:440–454

    Article  CAS  Google Scholar 

  • Szewczyk B, Hoyos-Carvajal L, Paluszek M, Skrzecz I, Lobo de Souza M (2006) Baculoviruses-- re-emerging biopesticides. Biotechnol Adv 24:143–160

    Article  CAS  Google Scholar 

  • Verma SK, Kingsley KL, Bergen MS, Kowalski KP, White JF (2018) Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-sssociated endophytic bacteria from invasive phragmites australis. Microorganisms 6(1). https://doi.org/10.3390/microorganisms6010021

  • Verma SK, White JF (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124:764–778

    Article  CAS  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17(1):209. https://doi.org/10.1186/s12866-017-1117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  CAS  Google Scholar 

  • Yi SY, Shirasu K, Moon JS, Lee SG, Kwon SY (2014) The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9(2):e88951. https://doi.org/10.1371/journal.pone.0088951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BG, Liu HF, Ding XH, Qiu JJ, Zhang M, Chu ZH (2018) Arabidopsis thaliana ACS8 plays a crucial role in the early biosynthesis of ethylene elicited by Cu2+ ions. J Cell Sci 131(2):jcs202424. https://doi.org/10.1242/jcs.202424

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Niu B, Tang L, Chen F, Zhao G, Zhao J (2016) Effects of polysaccharide elicitors from endophytic fusarium oxysporum Fat9 on the growth, flavonoid accumulation and antioxidant property of fagopyrum tataricum sprout cultures. Molecules 21(12). https://doi.org/10.3390/molecules21121590

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    Article  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Major Agricultural Application Technology Innovation Project of Shandong Province (2016), the Natural Science Fund for Outstanding Young Scholars of Shandong Province (JQ201807), the National Natural Science Foundation (31872925), the National Key Research and Development Program of China (2017YFD0200706), funds of the Shandong “Double Tops” Program, the Taishan Industrial Experts Program (No. tscy20150621), and the Shandong Modern Agricultural Technology & Industry System (SDAIT-17-06).

Author information

Authors and Affiliations

Authors

Contributions

X.D. designed the experiments. C.L., D.J., L.W., Y. J., S. T., X.H., X.H. performed the experiments. C.L., H.L., Z. L., M.Z., Z.C. and X.D. analyzed the data. C.L., H.L. and X.D. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinhua Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Stéphane Compant.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLS 744 bytes)

ESM 2

(DOCX 1321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Liu, H., Jiang, D. et al. Paecilomyces variotii extracts (ZNC) enhance plant immunity and promote plant growth. Plant Soil 441, 383–397 (2019). https://doi.org/10.1007/s11104-019-04130-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04130-w

Keywords

Navigation