Bioirrigation: a common mycorrhizal network facilitates the water transfer from deep-rooted pigeon pea to shallow-rooted finger millet under drought

Abstract

Background and aim

Hydraulically lifted water can be redistributed to a neighbouring plant, a process referred to as “bioirrigation”. Facilitation of bioirrigation by beneficial microbes such as arbuscular mycorrhizal (AM) fungi that form a common mycorrhizal network (CMN) between neighbouring plants has often been suggested but is not yet well explored. In this study, we tested if the presence of a CMN can facilitate the transfer of hydraulically lifted water from pigeon pea (PP) to finger millet (FM) and ameliorate thereby the water relations of the shallow-rooted FM during drought.

Methods

In a compartmented microcosm set up, PP roots were grown up to the bottom layer of the pot to access the soil moisture. Whereas FM roots were restricted into a shallow compartment, separated through a 21 μm nylon mesh, without access to the moist bottom layer. We applied deuterium labelled water to the bottom layer of the pot to test if PP can perform hydraulic lift (HL) and if hydraulically lifted water is transferred to FM via a CMN. During the drought period we also assessed the water relations of FM to determine if bioirrigation mediated through a CMN can support the water relations of FM.

Results

Application of deuterium-enriched water to the moist bottom layer of the microcosms demonstrated the capability of PP to hydraulically lift water to the drier topsoil through an insulation layer of coarse gravel. Only FM plants that were connected to PP via a CMN were able to utilize HL water. As a consequence, FM bioirrigated by PP in the presence of a CMN was able to maintain its water relations during drought conditions and showed higher rates of survival than FM plants in monoculture.

Conclusions

Connecting the rhizosphere of two intercropping partners with a CMN can improve the water relations of shallow-rooted crops by bioirrigation. This finding has great potential for reducing drought induced crop yield loss in arid and semi-arid tropics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Armas C, Kim JH, Bleby TM, Jackson RB (2012) The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species. Oecologia 168:11–22. https://doi.org/10.1007/s00442-011-2065-2

    Article  PubMed  Google Scholar 

  2. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10. https://doi.org/10.1111/j.1462-2920.2005.00942.x

    Article  CAS  PubMed  Google Scholar 

  3. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. https://doi.org/10.1007/s005720100097

  4. Augé RM, Stodola JW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97. https://doi.org/10.1023/A:1004891210871

  5. Augé RM, Sylvia DM, Park S, Buttery BR, Saxton AM, Moore JL, Cho K (2004) Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Can J Bot 82:503–514. https://doi.org/10.1139/b04-020

    Article  Google Scholar 

  6. Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24. https://doi.org/10.1007/s00572-014-0585-4

    Article  PubMed  Google Scholar 

  7. Barea JM, Azcen-Aguilar C, Azcen R (1991) The role of vesicular-arbuscular mycorrhizae in improving plant N acquisition from soil as assessed with 15N. In: Stable isotopes in plant nutrition, soil fertility and environmental studies. International Atomic Energy Agency, Vienna, pp 209–216

  8. Barnard RL, Bello F, Gilgen AK, Buchmann N (2006) The δ18O of root crown water best reflects source water δ18O in different types of herbaceous species. Rapid Commun Mass Spectrom 20:3799–3802. https://doi.org/10.1002/rcm.2778

  9. Beggi F, Hamidou F, Hash CT, Buerkert A (2016) Effects of early mycorrhization and colonized root length on low-soil-phosphorus resistance of West African pearl millet. J Plant Nutr Soil Sci 179:466–471. https://doi.org/10.1002/jpln.201500501

    Article  CAS  Google Scholar 

  10. Bingham MA, Simard S (2012) Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15:188–199. https://doi.org/10.1007/s10021-011-9502-2

    Article  CAS  Google Scholar 

  11. Bleby TM, Mcelrone AJ, Jackson RB (2010) Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant Cell Environ 33:2132–2148. https://doi.org/10.1111/j.1365-3040.2010.02212.x

    Article  PubMed  Google Scholar 

  12. Bogie NA, Bayala R, Diedhiou I, Dick RP, Ghezzehei TA (2018a) Intercropping with two native woody shrubs improves water status and development of interplanted groundnut and pearl millet in the Sahel. Plant Soil 435:143–159. https://doi.org/10.1007/s11104-018-3882-4

    Article  CAS  Google Scholar 

  13. Bogie NA, Bayala R, Diedhiou I, Conklin MH, Fogel ML, Dick RP, Ghezzehei TA (2018b) Hydraulic redistribution by native sahelian shrubs: bioirrigation to resist in-season drought. Front Environ Sci 6:1–12. https://doi.org/10.3389/fenvs.2018.00098

    Article  Google Scholar 

  14. Brooks JR, Meinzer FC, Coulombe ROB, Gregg J (2002) Hydraulic redistribution of soil water during summer drought in two contrasting pacific northwest coniferous forests. Tree Physiol 22:1107–1117

    Article  PubMed  Google Scholar 

  15. Brooks JR, Meinter FC, Warren JM et al (2005) Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant Cell Environ 29:138–150. https://doi.org/10.1111/j.1365-3040.2005.01409.x

    Article  Google Scholar 

  16. Brundrett M (1994) Estimation of root length and colonization by mycorrhizal fungi. In: Brundrett, M., Melville, L., Peterson (Eds.), Practical Methods in Mycorrhiza Research. Waterloo, pp 51–59

  17. Burgess SSO (2011) Can hydraulic redistribution put bread on our table? Plant Soil 341:25–29. https://doi.org/10.1007/s11104-010-0638-1

    Article  CAS  Google Scholar 

  18. Burgess SSO, M a A, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311. https://doi.org/10.1007/s004420050521

    Article  PubMed  Google Scholar 

  19. Byra RMS, Bagyaraj DJ (1991) The symbiotic efficiency of pigeonpea to VA mycorrhizal inoculation in an Alfisol and a vertisol. Biol Agric Hortic 8:177–182. https://doi.org/10.1080/01448765.1991.9754588

    Article  Google Scholar 

  20. Caldwell MM (1990) Water parasitism stemming from hydraulic lift: a quantitative test in the field. Isr J Bot 39:395–402. https://doi.org/10.1080/0021213X.1990.10677163

    Article  Google Scholar 

  21. Caldwell MM, Manwaring JH (1994) Hydraulic lift and soil nutrient heterogeneity. Isr J Plant Sci 42:321–330. https://doi.org/10.1080/07929978.1994.10676583

    Article  Google Scholar 

  22. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161. https://doi.org/10.1007/s004420050363

    Article  PubMed  Google Scholar 

  23. Carminati A, Moradi AB, Vetterlein D, Vontobel P, Lehmann E, Weller U, Vogel HJ, Oswald SE (2010) Dynamics of soil water content in the rhizosphere. Plant Soil 332:163–176. https://doi.org/10.1007/s11104-010-0283-8

    Article  CAS  Google Scholar 

  24. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574

    Article  PubMed  Google Scholar 

  25. Dohn J, Demgele F, Karembe M, Moustakas A, Amevor KA, Hanan NP (2013) Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J Ecol 101:202–209

    Article  Google Scholar 

  26. Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483. https://doi.org/10.1093/jxb/erm009

    Article  CAS  PubMed  Google Scholar 

  27. Egerton-Warburton LM, Querejeta JI, Allen MF (2008) Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought. Plant Signal Behav 3:68–71. https://doi.org/10.4161/psb.3.1.4924

    Article  PubMed  PubMed Central  Google Scholar 

  28. Espeleta JF, West JB, Donovan LA (2004) Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community. Oecologia 138:341–349. https://doi.org/10.1007/s00442-003-1460-8

    Article  CAS  PubMed  Google Scholar 

  29. Fu YJ, Liu W, Zu YG, Tong MH, Li SM, Yan MM, Efferth T, Luo H (2008) Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Food Chem 111:508–512. https://doi.org/10.1016/j.foodchem.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  30. Gamborg OL, Wetter LR (1975) Plant tissue culture methods. Saskatoon: National Research Council

    Google Scholar 

  31. Govinda RYS, Bagyaraj DJ, Rai PV (1983) Selection of an efficient VA mycorrhizal fungus for finger millet: II. Screening under field conditions. Zentralbl Mikrobiol 138:415–419. https://doi.org/10.1016/S0232-4393(83)80039-0

    Article  Google Scholar 

  32. Hetrick BAD, Wilson GWT, Todd TC (1996) Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can J Bot 74:19–25. https://doi.org/10.1139/b96-003

    Article  CAS  Google Scholar 

  33. Hirota I, Sakuratani T, Sato T, Higuchi H, Nawata E (2004) A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops. Agrofor Syst 60:181–187. https://doi.org/10.1023/B:AGFO.0000013293.77907.64

    Article  Google Scholar 

  34. Höflich G, Wiehe W, Kühn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905. https://doi.org/10.1007/BF01923476

    Article  Google Scholar 

  35. Horton JL, Hart SC (1998) Hydraulic lift: a potentially important ecosystem process. Trends Ecol Evol 13:232–235. https://doi.org/10.1016/S0169-5347(98)01328-7

    Article  CAS  PubMed  Google Scholar 

  36. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515. https://doi.org/10.1046/j.1469-8137.2003.00938.x

    Article  Google Scholar 

  37. Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712. https://doi.org/10.1055/s-2005-872893

    Article  CAS  PubMed  Google Scholar 

  38. Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311. https://doi.org/10.1111/j.1469-8137.1990.tb04718.x

    Article  Google Scholar 

  39. Lee J-E, Oliveira RS, Dawson TE, Fung I (2005) Root functioning modifies seasonal climate. Proc Natl Acad Sci U S A 102:17576 LP-17581

    Google Scholar 

  40. Liste H-H (1993) Förderung von symbiose und Wachstum bei Luzerne durch kombinierte Beimpfung mit Rhizobium meliloti und Pseudomonas fluorescens. Zentralbl Mikrobiol 148:163–176. https://doi.org/10.1016/S0232-4393(11)80085-5

    Article  Google Scholar 

  41. Ludwig F, Dawson TE, Kroon H et al (2003) Hydraulic lift in Acacia tortilis trees on an east African savanna. Oecologia 134:293–300. https://doi.org/10.1007/s00442-002-1119-x

    Article  CAS  PubMed  Google Scholar 

  42. Ludwig F, de-Kroon H, Berendse F, Prins HHT (2004a) The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105

    Article  Google Scholar 

  43. Ludwig F, Dawson TE, Prins HHT, Berendse F, de-Kroon H (2004b) Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift. Ecol Lett 7:623–631

    Article  Google Scholar 

  44. Mathimaran N, Srivastava R, Wiemken A, Sharma AK, Boller T (2012) Genome sequences of two plant growth-promoting fluorescent pseudomonas strains, R62 and R81. J Bacteriol 194:3272–3273. https://doi.org/10.1128/JB.00349-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meinzer FC, Brooks JR, Bucci S, Goldstein G, Scholz FG, Warren JM (2004) Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol 24:919–928. https://doi.org/10.1093/treephys/24.8.919

    Article  CAS  PubMed  Google Scholar 

  46. Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898. https://doi.org/10.1111/j.1469-8137.2008.02623.x

    Article  PubMed  Google Scholar 

  47. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

    Article  PubMed  Google Scholar 

  48. Newberry SL, Nelson DB, Kahmen A (2017) Cryogenic vacuum artifacts do not affect plant water-uptake studies using stable isotope analysis. Ecohydrology 10:1–10. https://doi.org/10.1002/eco.1892

    Article  Google Scholar 

  49. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. https://doi.org/10.1038/nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  50. Peñuelas J, Filella I, Lloret F et al (2000) Effects of a severe drought on water and nitrogen use by Quercus ilex and Phyllyrea latifolia. Biol Plant 43:47–53. https://doi.org/10.1023/A:1026546828466

    Article  Google Scholar 

  51. Plamboeck AH, Dawson TE, Egerton-Warburton LM, North M, Bruns TD, Querejeta JI (2007) Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza 17:439–447. https://doi.org/10.1007/s00572-007-0119-4

    Article  PubMed  Google Scholar 

  52. Prieto I, Padilla FM, Armas C, Pugnaire FI (2011) The role of hydraulic lift on seedling establishment under a nurse plant species in a semi-arid environment. Perspect Plant Ecol Evol Syst 13:181–187. https://doi.org/10.1016/j.ppees.2011.05.002

    Article  Google Scholar 

  53. Prieto I, Roldán A, Huygens D, del Mar Alguacil M, Navarro-Cano JA, Querejeta JI (2016) Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant Soil 406:15–27. https://doi.org/10.1007/s11104-016-2860-y

    Article  CAS  Google Scholar 

  54. Querejeta JI (2017) Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. In: Johnson NC, Gehring C, Jansa JBT-MM of S (eds). Elsevier, pp 299–317

  55. Querejeta JI, Egerton-Warburton LM, Prieto I, Vargas R, Allen MF (2012) Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant Soil 355:63–73. https://doi.org/10.1007/s11104-011-1080-8

    Article  CAS  Google Scholar 

  56. Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489. https://doi.org/10.1007/BF00379405

    Article  CAS  PubMed  Google Scholar 

  57. Saharan K, Schütz L, Kahmen A, Wiemken A, Boller T, Mathimaran N (2018) Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “biofertilization” and “bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Front Environ Sci 6:1–11. https://doi.org/10.3389/fenvs.2018.00046

    Article  Google Scholar 

  58. Sauer DB, Burroughs R (1986) Disinfection of seed surfaces with sodium hypochlorite. Phytopathol 76:745–749

    Article  CAS  Google Scholar 

  59. Schenck NC, Smith GS (1982) Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol 92:193–201

    Article  Google Scholar 

  60. Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739. https://doi.org/10.1111/j.1365-2745.2006.01124.x

    Article  Google Scholar 

  61. Scholes R, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:527–544

    Article  Google Scholar 

  62. Schoonmaker AL, Teste FP, Simard SW, Guy RD (2007) Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154:455–466. https://doi.org/10.1007/s00442-007-0852-6

    Article  PubMed  Google Scholar 

  63. Schütz L, Gattinger A, Meier M, Müller A, Boller T, Mäder P, Mathimaran N (2018) Improving crop yield and nutrient use efficiency via biofertilization—a global meta-analysis. Front Plant Sci 8:2204. https://doi.org/10.3389/fpls.2017.02204

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sekiya N, Yano K (2004) Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift? - hydrogen stable isotope investigation of xylem waters. F Crop Res 86:167–173. https://doi.org/10.1016/j.fcr.2003.08.007

    Article  Google Scholar 

  65. Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60. https://doi.org/10.1016/j.fbr.2012.01.001

    Article  Google Scholar 

  66. Smith DM, Jackson N a, Roberts JM, Ong CK (1999) Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta. Funct Ecol 13:256–264. https://doi.org/10.1046/j.1365-2435.1999.00315.x

    Article  Google Scholar 

  67. Sorensen JN, Larsen J, Jakobsen I (2005) Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant Soil 273:101–114. https://doi.org/10.1007/s11104-004-6960-8

    Article  CAS  Google Scholar 

  68. Subbarao MVSST, MUralikrishna G (2001) Non-starchy polysaccharides and bound phenolics acids from native and malted finger millet (Eleusine coracan Indaf-15). Food Chem 72:187–192

    Article  Google Scholar 

  69. Vanaja M, Reddy PRR, Lakshmi NJ et al (2010) Response of seed yield and its components of red gram (Cajanus cajan L. Millsp.) to elevated CO2. Plant Soil Environ 56:458–462

    Article  CAS  Google Scholar 

  70. Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797. https://doi.org/10.1104/pp.112.195727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394. https://doi.org/10.1111/j.1469-8137.2008.02377.x

    Article  CAS  PubMed  Google Scholar 

  72. Wu Q-S, Xia R-X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425. https://doi.org/10.1016/j.jplph.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  73. Zarebanadkouki M, Kim YX, Carminati A (2013) Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil. New Phytol 199:1034–1044. https://doi.org/10.1111/nph.12330

    Article  CAS  PubMed  Google Scholar 

  74. Zhu YG, Smith FA, Smith SE (2003) Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13:93–100. https://doi.org/10.1007/s00572-002-0205-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was funded by Swiss Agency for Development and Cooperation (SDC) under the Indo-Swiss Collaboration in Biotechnology (The BIOFI project). We are thankful to Dr. M. N. Thimmegowda, All India Coordinated Research Project on Small Millets, University of Agricultural Sciences, Bengaluru India, for providing the PP and FM seeds. Dr. D. J. Bagyaraj, Centre for Natural Biological Resources and Community Development (CNBRCD), Bengaluru, India) for providing AMF culture for research work at University of Basel, Switzerland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ansgar Kahmen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tatsuhiro Ezawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Mathimaran, N., Boller, T. et al. Bioirrigation: a common mycorrhizal network facilitates the water transfer from deep-rooted pigeon pea to shallow-rooted finger millet under drought. Plant Soil 440, 277–292 (2019). https://doi.org/10.1007/s11104-019-04082-1

Download citation

Keywords

  • AM fungi
  • Bioirrigation
  • Drought
  • Finger millet
  • Intercropping
  • PGPR
  • Pigeon pea
  • Water relations