Skip to main content
Log in

Ethylene insensitive mutation increases Arabidopsis tolerance to Cd in NPR1-dependent manner

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Ethylene-insensitive mutation (ein)-conferred Arabidopsis tolerance to Cd has been reported. However, the mechanisms involved are far from clear. This study explores possible mechanisms.

Methods

Arabidopsis wild-type (WT), and ein2–1, npr1–1 (nonexpressor of PR gene 1), and npr1–1/ein2–1 (abbreviated to n1e2) were exposed to 50 μM CdCl2 for 48 h or 7 d (just for assessment of plant growth). Some physiological and biochemical parameters, and gene expression were analyzed.

Results

Exposure to Cd inhibited growth of aerial parts and roots. However, as compared with WT, an increased tolerance was observed in ein2–1, a similar pattern in npr1–1, whereas a more sensitive performance in n1e2. Higher antioxidative capacity and lower oxidative damage occurred in ein2–1 than in other tested genotypes under Cd stress. The expression of five selected pectin methylesterase inhibitor (PMEI)-encoding genes was all significantly up-regulated in ein2–1 compared to others under Cd stress, leading to the largest decrease of PME activity in this genotype. Under Cd stress, the activity of root cytoplasmic invertase was induced only in ein2–1, while cell wall- and vacuolar isoforms were suppressed, especially obviously in ein2–1 relative to other genotypes. Gene expression suggested that invertase activity could be regulated at transcriptional and posttranslational levels under Cd stress. Additionally, ubiquitin proteasome system-mediated protein degradation, Cd chelation and vacuolar sequestration might also participate in plant responses to Cd stress.

Conclusions

This study provides evidence that ethylene insensitive mutation increases Arabidopsis plant tolerance to Cd in NPR1-dependent manner. This may involve many biological processes, among which the inhibitory effect of PMEIs on PME activity was especially striking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abozeid A, Ying Z, Lin Y, Liu J, Zhang Z, Tang Z (2017) Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Front Plant Sci 8:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Barratt DH, Derbyshire H, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci U S A 106:13124–13129

    Article  PubMed  PubMed Central  Google Scholar 

  • Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, Ramonell KM, Somerville S (2010) ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS One 5:e14426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder BM, Gagne JM, Walker JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3-binding F-box proteins, EBF1 and EBF2, have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66:3815–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao S, Chen Z, Liu G, Jiang L, Yuan H, Ren G, Bian X, Jian H, Ma X (2009) The Arabidopsis ethylene-insensitive 2 gene is required for lead resistance. Plant Physiol Biochem 47:308–312

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou JM (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SC, Chao YY, Kao CH (2012) Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. J Plant Physiol 169:892–898

    Article  CAS  PubMed  Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  PubMed  Google Scholar 

  • De Coninck B, LeRoy K, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, Van Laere A, Van den Ende W (2005) Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell Environ 28:432–443

    Article  Google Scholar 

  • Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y (2018) Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454–1467

    Article  CAS  PubMed  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    Article  CAS  PubMed  Google Scholar 

  • Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201–1232

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A 99:11519–11524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnik EY, Belkov VI, Tarasenko VI, Korzun MA, Konstantinov YM (2016) Glutathione reductase gene expression depends on chloroplast signals in Arabidopsis thaliana. Biochemistry (Mosc) 81:364–372

    Article  CAS  Google Scholar 

  • Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129:967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H, Zhou L, Hu X, Zhou Y, Tan X (2016) Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environ Sci Pollut Res 23:8699–8708

    Article  CAS  Google Scholar 

  • Goritschnig S, Zhang YY, Li X (2007) The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant J 49:540–551

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (s-n-butylhomocysteine sulfoximine). J Biol Chem 254:7558–7560

    CAS  PubMed  Google Scholar 

  • Guzmán P (2012) The prolific ATL family of RING-H2 ubiquitin ligases. Plant Signal Behav 7:1014–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao L, Zhao Y, Jin D, Zhang L, Bi XH, Chen HX, Xu Q, Ma CY, Li GZ (2012) Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant Soil 354:81–95

    Article  CAS  Google Scholar 

  • Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW (2002) Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 30:385–394

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY (2017) Responses of plant proteins to heavy metal stress-a review. Front Plant Sci 8:1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066 

  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Ceng M, Wan J (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245:863–873

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  CAS  PubMed  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecule, big impact. Front Plant Sci 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong X, Li C, Zhang F, Yu Q, Gao S, Zhang M, Tian H, Zhang J, Yuan X, Ding Z (2018) Ethylene promotes cadmium-induced root growth inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis. Plant Cell Environ 41:2449–2462

    Article  CAS  PubMed  Google Scholar 

  • Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol 139:1597–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yao R, Ma S, Hu S, Li S, Wang Y, Yan C, Xie D, Yan J (2017) Efficient ASK-assisted system for expression and purification of plant F-box proteins. Plant J 92:736–743

    Article  CAS  PubMed  Google Scholar 

  • Li N, Han X, Feng D, Yuan D, Huang LJ (2019) Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? Int J Mol Sci 20:671

    Article  CAS  PubMed Central  Google Scholar 

  • Link M, Rausch T, Greiner S (2004) In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Lett 573:105–109

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Fabri E, De Caroli M, Hansen AR, Willats WG, Piro G, Bellincampi D (2017) Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiol 173:1844–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Zhu Y, Huang LL, Xu X, Li GZ, Hao L (2016a) Combined effect of ethylene- and salicylic acid-signaling insensitive mutation on Arabidopsis response to low temperature. Biol Plant 60:523–531

    Article  CAS  Google Scholar 

  • Liu Z, Ding Y, Wang F, Ye Y, Zhu C (2016b) Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep 35:719–731

    Article  CAS  PubMed  Google Scholar 

  • Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:e1005760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moudouma CFM, Gloaguen V, Riou C, Forestier L, Saladin G (2012) High concentration of cadmium induces AtPCS2 gene expression in Arabidopsis thaliana (L.) Heynh ecotype Wassilewskija seedlings. Acta Physiol Plant 34:1083–1091

    Article  CAS  Google Scholar 

  • Müller K, Levesque-Tremblay G, Bartels S, Weitbrecht K, Wormit A, Usadel B, Haughn G, Kermode AR (2013) Demethylesterification of cell wall pectins in Arabidopsis thaliana plays a role in seed germination. Plant Physiol 161:305–316

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23:512–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Wang YY, Yin QS, Huang LL, Jiang YG, Li GZ, Hao L (2018) Multiple biological processes involved in the regulation of salicylic acid in Arabidopsis response to NO2 exposure. Environ Exp Bot 149:9–16

    Article  CAS  Google Scholar 

  • Ranocha P, Francoz E, Burlat V, Dunand C (2014) Expression of PRX36, PMEI6 and SBT1.7 is controlled by complex transcription factor regulatory networks for proper seed coat mucilage extrusion. Plant Signal Behav 9:e977734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuber TL, Plotnikova JM, Dewdney J, Rogers EE, Wood W, Ausubel FM (1998) Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J 16:473–485

    Article  CAS  PubMed  Google Scholar 

  • Ru L, Osorio S, Wang L, Fernie AR, Patrick JW, Ruan YL (2017) Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. J Exp Bot 68:4263–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Schellingen K, Van Der Straeten D, Remans T, Vangronsveld J, Keunen E, Cuypers A (2015) Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana. Plant Sci 239:137–146

    Article  CAS  PubMed  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. Genes Dev 13:3259–3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semane B, Cuypers A, Smeets K, van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Sénéchal F, Mareck A, Marcelo P, Lerouge P, Pelloux J (2015) Arabidopsis PME17 activity can be controlled by pectin methylesterase inhibitor4. Plant Signal Behav 10:e983351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee AK, Xiang F, Park CM (2008) Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49:334–344

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva LI, Keurentjes JJ, Bentsink L, Vonk J, van der Plas LH, Koornneef M, Vreugdenhil D (2006) Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci U S A 103:2994–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7:e1001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeto J, Itoh Y, Hirao S, Ohira K, Fujita K, Tsutsumi Y (2015) Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. J Integr Plant Biol 57:349–356

    Article  CAS  PubMed  Google Scholar 

  • Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci 5:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Su T, Wolf S, Han M, Zhao M, Wei H, Greiner S, Rausch T (2016) Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth. Plant Mol Biol 90:137–155

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Veillet F, Gaillard C, Coutos-Thévenot P, La Camera S (2016) Targeting the AtCWIN1 gene to explore the role of invertases in sucrose transport in roots and during Botrytis cinerea infection. Front Plant Sci 7:1899

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  CAS  PubMed  Google Scholar 

  • Wormit A, Usadel B (2018) The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int J Mol Sci 19:2878

    Article  CAS  PubMed Central  Google Scholar 

  • Xiang L, Le Roy K, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F, Van den Ende W (2011) Exploring the neutral invertase–oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot 62:3849–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, An LY, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, He QQ, Zhao SY, Huang LL, Hao L (2014) Arabidopsis ein2-1 and npr1-1 response to Al stress. Bull Environ Contam Toxicol 93:78–83

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012) Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta 236:989–997

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 31570502 to LGZ, 31572213 and 31270446 to HL) and Liaoning Province Science and Technology Plan Project (No. 2017208001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangzhe Li or Lin Hao.

Additional information

Responsible Editor: Juan Barcelo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Liu, C., Li, G. et al. Ethylene insensitive mutation increases Arabidopsis tolerance to Cd in NPR1-dependent manner. Plant Soil 441, 49–69 (2019). https://doi.org/10.1007/s11104-019-04080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04080-3

Keywords

Navigation