Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L.

Abstract

Aims

The objectives of this study were to assess how Arachis hypogaea L. (peanut or groundnut) responds to different P supplies in terms of growth and photosynthesis, and to determine the optimum P supply and differential P stress thresholds.

Methods

We investigated biomass production, leaf expansion, photosynthetic parameters, relative chlorophyll concentration, P700 parameters and chlorophyll fluorescence in a climate-controlled chamber at different P supplies (0.1, 0.5, 1, 1.5, 2 mM).

Results

Both deficient and excessive exogenous P supplies significantly reduced leaf growth, relative chlorophyll concentration and dry matter production in two high-yielding peanut cultivars. The optimum P range was 0.8–1.1 mM for peanut seedlings. Through principal component analysis (PCA) and data fitting, we found that the trade-off of the normalised actual quantum yield [Y(II)] and non-regulatory quantum yield [Y(NO)] in photosystem II (PSII) under light is one of the best proxies to determine the suboptimal, supraoptimal, deficient and toxic P supplies, because they are the two key factors with major positive and negative effects of PC1, accounting for 75.5% of the variability. The suboptimal P range was 0.41–0.8 mM and the supraoptimal P range was 1.1–1.72 mM. The suboptimal P supplies corresponded with a leaf P concentration range of 4.8–8.1 mg P g−1 DW, while the supraoptimal P supplies corresponded with a leaf P concentration range of 9.9–12.2 mg P g−1 DW.

Conclusions

Both deficient and toxic P levels severely inhibited leaf growth and photosynthesis of peanut, and these unfavourable conditions were associated with significant reduction of biomass and photosynthesis, and photodamage extending beyond PSII. The trade-off of the normalised Y(II) and Y(NO) is a useful benchmark to demarcate deficient, suboptimal, supraoptimal and toxic P-fertilisations levels in A. hypogaea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Assuero SG, Mollier A, Pellerin S (2004) The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production. Plant Cell Environ 27:887–895

    CAS  Google Scholar 

  2. Benton J, Jones JR (1998) Phosphorus toxicity in tomato plants: when and how does it occur? Commun Soil Sci Plant Anal 29:1779–1784

    Google Scholar 

  3. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo ACG, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SCM, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    PubMed  CAS  Google Scholar 

  4. Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Waltham, pp 191–248

    Google Scholar 

  5. Brooks A (1986) Effects of phosphorus nutrition on Ribulose-1,5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin-cycle metabolites in spinach leaves. Aust J Plant Physiol 13:221–237

    CAS  Google Scholar 

  6. Brooks A, Woo KC, Wong SC (1988) Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynth Res 15:133–141

    PubMed  CAS  Google Scholar 

  7. Cailly A, Rizzal F, Genty B, Harbinson J (1996) Fate of excitation at PSII in leaves, the nonphotochemical side. Paper presented at the 10th FESPP meeting, Florence, Italy

  8. Cakmak I, Marschner H (1987) Mechanism of phosphorus-induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants. Physiol Plant 70:13–20

    CAS  Google Scholar 

  9. Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc deficient plants. J Plant Physiol 132:356–361

    CAS  Google Scholar 

  10. Campbell CD, Sage RF (2006) Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). Plant Cell Environ 29:844–853

    PubMed  CAS  Google Scholar 

  11. Carstensen A, Herdean A, Schmidt SB, Sharma A, Spetea C, Pribil M, Husteda S (2018a) The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol 177:271–284

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Carstensen A, Szameitat AE, Frydenvang J, Husted S (2018b) Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant Soil. https://doi.org/10.1007/s11104-018-3783-6

    Google Scholar 

  13. Chen S, Ding G, Wang Z, Cai H, Xu F (2015a) Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress. J Proteome 117:106–119

    CAS  Google Scholar 

  14. Chen S, Zhao H, Ding G, Xu F (2015b) Genotypic differences in antioxidant response to phosphorus deficiency in Brassica napus. Plant Soil 391:19–32

    CAS  Google Scholar 

  15. Evans JR (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol 72:297–302

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    PubMed  Google Scholar 

  17. Fan YQ (2014) Peanut cultivation in modern China. Shandong Science Press, Jinan

    Google Scholar 

  18. Foote BD, Howell RW (1964) Phosphorus tolerance and sensitivity of soybeans as related to uptake and translocation. Plant Physiol 39:610–613

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Foyer C, Dietz KJ (1986) The relationship between phosphate status and photosynthesis in leaves. Planta 167:376–381

    PubMed  Google Scholar 

  20. Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Fredeen AL, Raab TK, Rao IM, Terry N (1990) Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta 181:399–405

    PubMed  CAS  Google Scholar 

  22. Frydenvang J, Maarschalkerweerd MV, Carstensen A, Mundus S, Schmidt SB, Pedas PR, Laursen KH, Schjoerring JK, Husted S (2015) Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiol 169:353–361

    PubMed  PubMed Central  Google Scholar 

  23. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  24. Gilbert N (2009) Environment: the disappearing nutrient. Nature 461:716–718

    PubMed  CAS  Google Scholar 

  25. Groot C, Boogaard R, Marcelis L, Harbinson J, Lambers H (2003) Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. J Exp Bot 54:1957–1967

    PubMed  Google Scholar 

  26. Hahn C, Prasuhn V, Stamm C, Schulin R (2012) Phosphorus losses in runoff from manured grassland of different soil P status at two rainfall intensities. Agric Ecosyst Environ 153:65–74

    CAS  Google Scholar 

  27. Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    PubMed  CAS  Google Scholar 

  28. Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    PubMed  CAS  Google Scholar 

  29. Havaux M, Davaud A (1994) Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem-II activity. Photosynth Res 40:75–92

    PubMed  CAS  Google Scholar 

  30. Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White PJ (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Waltham, pp 135–189

    Google Scholar 

  31. He G, Zhang J, Hu X, Wu J (2011) Effect of aluminium toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils. Acta Physiol Plant 33:1285–1292

    CAS  Google Scholar 

  32. He ZQ, Pagliari PH, Waldrip HM (2016) Applied and environmental chemistry of animal manure: a review. Pedosphere 26:779–816

    Google Scholar 

  33. Hernández I, Munné-Bosch S (2015) Linking phosphorus availability with photo-oxidative stress in plants. J Exp Bot 66:2889–2900

    PubMed  Google Scholar 

  34. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:357–359

    Google Scholar 

  35. Horgan JM, Wareing PF (1980) Cytokinins and the growth responses of seedlings of Betula pendula Roth. And Acer pseudoplatanus L. to nitrogen and phosphorus deficiency. J Exp Bot 31:525–532

    CAS  Google Scholar 

  36. Huang W, Yang Y, Zhang J, Hu H, Zhang S (2016) PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra. Photosynth Res 129:85–92

    PubMed  CAS  Google Scholar 

  37. Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–228

    CAS  Google Scholar 

  38. Joly D, Carpentier R (2007) The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O-J-I-P chlorophyll fluorescence rise: effects of various electron acceptors. J Photochem Photobiol B 88:43–50

    PubMed  CAS  Google Scholar 

  39. Kaiser DE, Mallarino AP, Haq MU, Allen BL (2009) Runoff phosphorus loss immediately after poultry manure application as influenced by the application rate and tillage. J Environ Qual 38:299–308

    PubMed  CAS  Google Scholar 

  40. Kavanová M, Grimoldi AA, Lattanzi FA, Schnyder H (2006a) Phosphorus nutrition and mycorrhiza effects on grass leaf growth. P status- and size-mediated effects on growth zone kinematics. Plant Cell Environ 29:511–520

    PubMed  Google Scholar 

  41. Kavanová M, Lattanzi FA, Grimoldi AA, Schnyder H (2006b) Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiol 141:766–775

    PubMed  PubMed Central  Google Scholar 

  42. Kirschbaum M, Bellingham D, Cromer R (1992) Growth analysis of the effect of phosphorus nutrition on seedings of Eucalyptus grandis. Aust J Plant Physiol 19:55–66

    CAS  Google Scholar 

  43. Kitajima M, Butler W (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta Bioenerg 376:105–115

    CAS  Google Scholar 

  44. Klughammer C, Schreiber U (1994) An improved method, using saturating light pluses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268

    CAS  Google Scholar 

  45. Klughammer C, Schreiber U (2008a) Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl Notes 1:27–35

    Google Scholar 

  46. Klughammer C, Schreiber U (2008b) Saturation pulse method for assessment of energy conversion in PSI. PAM Appl Notes 1:11–14

    Google Scholar 

  47. Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419:447–455

    CAS  Google Scholar 

  48. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    PubMed  CAS  Google Scholar 

  49. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol 42:313–349

    CAS  Google Scholar 

  50. Lambers H, Plaxton WC (2015) Phosphorus: back to the roots. In: Plaxton WC, Lambers H (ed) Annual plant reviews Volume 48: Phosphorus metabolism in plants. Wiley-Blackwell Publishing, Chicester, pp 3–22

    Google Scholar 

  51. Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martinez-Ferri E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122

    CAS  Google Scholar 

  52. Li XG, Duan W, Meng QW, Zou Q, Zhao SJ (2004) The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. Plant Cell Physiol 45:103–108

    PubMed  CAS  Google Scholar 

  53. Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    PubMed  CAS  Google Scholar 

  54. Liu YF, Han XR, Zhan XM, Yang JF, Wang YZ, Song QB, Chen X (2013) Regulation of calcium on peanut photosynthesis under low night temperature stress. J Integr Agric 12:2172–2178

    Google Scholar 

  55. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    PubMed  CAS  Google Scholar 

  57. Meng Z, Lu T, Zhang G, Qi M, Tang W, Li L, Liu Y, Li T (2017) Photosystem inhibition and protection in tomato leaves under low light. Sci Hortic 217:145–155

    CAS  Google Scholar 

  58. Ova EA, Kutman UB, Ozturk L, Cakmak I (2015) High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant Soil 393:147–162

    CAS  Google Scholar 

  59. Pang JY, Tibbett M, Denton MD, Lambers H, Siddique KHM, Ryan MH (2011) Soil phosphorus supply affects nodulation and N : P ratio in 11 perennial legume seedlings. Crop Pasture Sci 62:992–1001

    CAS  Google Scholar 

  60. Pang JY, Ryan MH, Lambers H, Siddique KHM (2018) Phosphorus acquisition and utilisation in crop legumes under global change. Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2018.05.012

    PubMed  CAS  Google Scholar 

  61. Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4. https://doi.org/10.1038/ncomms3934

  62. Pieters AJ, Paul MJ, Lawlor DW (2001) Low sink demand limits photosynthesis under pi deficiency. J Exp Bot 52:1083–1091

    PubMed  CAS  Google Scholar 

  63. Plesničar M, Kastori R, Petrović N, Petrović D (1994) Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus annuus L.) leaves as affected by phosphorus nutrition. J Exp Bot 45:919–924

    Google Scholar 

  64. Prasad PVV, Craufurd PQ, Summerfield RJ (2000) Effect of high air and soil temperature on dry matter production, pod yield and yield components of groundnut. Plant Soil 222:231–239

    CAS  Google Scholar 

  65. Raghothama KG (2000) Phosphate transport and signalling. Curr Opin Plant Biol 3:182–187

    PubMed  CAS  Google Scholar 

  66. Rao M, Terry N (1989) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. Plant Physiol 90:814–819

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Reich P, Walters M, Ellsworth D (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci U S A 94:13730–13734

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Reich P, Oleksyn J, Wright I (2009) Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207–212

    PubMed  Google Scholar 

  69. Rodríguez D, Keltjens WG, Goudriaan J (1998) Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions. Plant Soil 200:227–240

    Google Scholar 

  70. Römheld V (2012) Diagnosis of deficiency and toxicity of nutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Waltham, pp 299–314

    Google Scholar 

  71. Rossiter RC (1952) Phosphorus toxicity in subterranean clover and oats grown on Muchea sand, and the modifying effects of lime and nitrate-nitrogen. Aust J Agric Res 3:227–243

    CAS  Google Scholar 

  72. Schachtman D, Reid R, Ayling S (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (ed) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  74. Shane MW, De Vos M, De Roock S, Cawthray GR, Lambers H (2003) Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata r.Br. Plant Soil 248:209–219

    CAS  Google Scholar 

  75. Shane MW, Mccully ME, Lambers H (2004) Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J Exp Bot 55:1033–1044

    PubMed  CAS  Google Scholar 

  76. Singh JP, Karamanos RE, Stewart JW (1988) The mechanism of phosphorus-induced zinc deficiency in bean (Phaseolus vulgaris L). Can J Soil Sci 68:345–358

    CAS  Google Scholar 

  77. Singh SK, Badgujar GB, Reddy VR, Fleisher DH, Timlin DJ (2013) Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide. J Agron Crop Sci 199:436–448. https://doi.org/10.1111/jac.12033

    Article  CAS  Google Scholar 

  78. Stanciel K, Mortley DG, Hileman DR, Loretan PA, Bonsi CK, Hill WA (2000) Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment. Hortscience 35:49–52

    PubMed  CAS  Google Scholar 

  79. Terry N, Ulrich A (1973) Effects of phosphorus deficiency on photosynthesis and respiration of leaves of sugar beet. Plant Physiol 51:43–47

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Thomas D, Montagu K, Conroy J (2006) Leaf inorganic phosphorus as a potential indicator of phosphorus status, photosynthesis and growth of Eucalyptus grandis seedlings. For Ecol Manag 223:267–274

    Google Scholar 

  81. Turner BL (2008) Resource partitioning for soil phosphorus: a hypothesis. J Ecol 96:698–702

    CAS  Google Scholar 

  82. Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob Environ Chang 20:428–439

    Google Scholar 

  83. Veronica N, Subrahmanyam D, Kiran TV, Yugandhar P, Bhadana VP, Padma V, Jayasree G, Voleti SR (2017) Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes. Photosynthetica 55:285–293

    CAS  Google Scholar 

  84. Vitousek P, Porder S, Houlton B, Chadwick O (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15

    PubMed  Google Scholar 

  85. Wan SB (2003) Peanut cultivation in China. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  86. Warren CR (2011) How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus? Tree Physiol 31:727–739. https://doi.org/10.1093/treephys/tpr064

    Article  PubMed  CAS  Google Scholar 

  87. Warren RG, Benzian B (1959) High levels of phosphorus and die-back in yellow lupins. Nature 184:1588–1588

    CAS  Google Scholar 

  88. Weng XY, Xu HX, Yang Y, Peng HH (2008) Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. Biol Plant 52:307–313

    CAS  Google Scholar 

  89. Westerman RL (1990) Soil testing and plant analysis, 3rd edn. Soil Science Society of America, Madison, pp 181–193

    Google Scholar 

  90. Xu DQ (1997) Some problems in the analysis of stomatal limitation of photosynthesis. Plant Physiol Commun 33:241–244

    CAS  Google Scholar 

  91. Xu DQ (2013) Photosynthesis science. Science Press, Beijing

    Google Scholar 

  92. Xu HX, Weng XY, Yang Y (2007) Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russ J Plant Physiol 54:741–748

    CAS  Google Scholar 

  93. Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    CAS  Google Scholar 

  94. Yong JWH, Letham DS, Wong SC, Farquhar GD (2014) Rhizobium-induced elevation in xylem cytokinin delivery in pigeonpea induces changes in shoot development and leaf physiology. Funct Plant Biol 41:1323–1335

    CAS  Google Scholar 

  95. Yu SL (2008) Chinese peanut varieties and pedigree. Shanghai Science and Technology and Press, Shanghai

    Google Scholar 

  96. Yu TY, Wang CX, Sun XW, Wu ZF, Zheng YM, Sun XS, Shen P, Wang CB (2016) Characteristics of phosphorus and dry matter accumulation and distribution in peanut cultivars with different yield and phosphorus use efficiency. Chin J Oil Crop Sci 38:788–794

    Google Scholar 

  97. Zhang Z, Liao H, Lucas WJ (2014a) Molecular mechanisms underlying phosphate sensing, signalling, and adaptation in plants. J Integr Plant Biol 56:192–220

    PubMed  CAS  Google Scholar 

  98. Zhang GX, Liu YF, Ni Y, Meng ZJ, Lu T, Li TL (2014b) Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS One 9:e97322

    PubMed  PubMed Central  Google Scholar 

  99. Zhang K, Liu H, Tao P, Chen H (2014c) Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves. PLoS One 9:e98215

    PubMed  PubMed Central  Google Scholar 

  100. Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI (2015) Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise? J Photochem Photobiol B 152:318–324

    PubMed  CAS  Google Scholar 

  101. Zribi OT, Labidi N, Slama I, Debez A, Ksouri R, Rabhi M, Smaoui A, Abdelly C (2011) Alleviation of phosphorus deficiency stress by moderate salinity in the halophyte Hordeum maritimum L. Plant Growth Regul 66:75–85

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank to the anonymous reviewers for their very valuable suggestions and comments on the manuscript. This study was funded by Natural Science Foundation of China (31772391, 31301842), National Key Research and Development Plan (2018YFD0201206), the Xing Liao Talents Project and Sheng Jing Talents Project (RC170338), China Scholarship Council Project (CSC 201708210143) and National Peanut Research System (CARS-13- Nutrient Management). Thanks to Prof. Xinhua He for internal review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yifei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tim S. George.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Pang, J., Yong, J.W.H. et al. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L.. Plant Soil 447, 99–116 (2020). https://doi.org/10.1007/s11104-019-04041-w

Download citation

Keywords

  • Peanut
  • Phosphorus
  • Suboptimal
  • Supraoptimal
  • Photosynthesis