Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice–soil systems: a 13C-CO2 pulse labeling study

Abstract

Aims

Although nitrogen (N) fertilization is widely used to increase rice yield, its impact on the distribution, transformation, and fates of photosynthetic carbon (C) in rice–soil systems is poorly understood. To address this, we quantified the C flows into various pools in a rice–soil system.

Methods

Rice (Oryza sativa L.) was pulse-labeled with 13CO2 at the tillering stage. Samples were collected six times during the 26 days following labeling. We quantified the partitioned photosynthesized C into various pools using stable isotopic techniques and estimated C flows.

Results

Although the net distribution of assimilated C to belowground pools did not change, N fertilization promoted C assimilation in aboveground biomass. C allocation into soil was enhanced by N fertilization during early growth, but decreased during late growth. N fertilization induced higher mass-specific rhizodeposition (per unit root dry weight) and its turnover rate compared with the unfertilized system. However, with higher microbial turnover, the daily C allocation from roots to soil was similar at both fertilization levels.

Conclusions

Although total C input into soil is enhanced by N fertilization, its further fate is N fertilization independent, thus leading to a net accumulation of C input in rice paddy soil similar to that observed unfertilized soil.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agren GI, Franklin O (2003) Root: shoot ratios, optimization and nitrogen productivity. Ann Bot 92:795–800. https://doi.org/10.1093/aob/mcg203

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Atere CT, Ge T, Zhu Z, Tong C, Jones DL, Shibistova O, Guggenberger G, Wu J (2017) Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation. Biol Fertil Soils 53:407–417. https://doi.org/10.1007/s00374-017-1190-4

    CAS  Article  Google Scholar 

  3. Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001) Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77–86. https://doi.org/10.1023/A:1004817212321

    CAS  Article  Google Scholar 

  4. Baptist F, Aranjuelo I, Legay N, Lopez-Sangil L, Molero G, Rovira P, Nogués S (2015) Rhizodeposition of organic carbon by plants with contrasting traits for resource acquisition: responses to different fertility regimes. Plant Soil 394:391–406. https://doi.org/10.1007/s11104-015-2531-4

    CAS  Article  Google Scholar 

  5. Boddy E, Hill PW, Farrar J, Jones DL (2007) Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biol Biochem 39:827–835. https://doi.org/10.1016/j.soilbio.2006.09.030

    CAS  Article  Google Scholar 

  6. Bojović B, Marković A (2009) Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujev J Sci 31:69–74

    Google Scholar 

  7. Bowsher AW, Evans S, Tiemann LK, Friesen ML (2017) Effects of soil nitrogen availability on rhizodeposition in plants: a review. Plant Soil 423:59–85. https://doi.org/10.1007/s11104-017-3497-1

    CAS  Article  Google Scholar 

  8. Cheng X, Luo Y, Su B, Verburg PSJ, Hui D, Obrist D, Arnone JA, Johnson DW, Evans RD (2009) Responses of net ecosystem CO2 exchange to nitrogen fertilization in experimentally manipulated grassland ecosystems. Agric For Meteorol 149:1956–1963. https://doi.org/10.1016/j.agrformet.2009.07.001

    Article  Google Scholar 

  9. Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci U S A 103:10316–10321. https://doi.org/10.1073/pnas.0600989103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. de Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064. https://doi.org/10.1111/j.1469-8137.2010.03427.x

    CAS  Article  PubMed  Google Scholar 

  11. Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:216. https://doi.org/10.3389/fmicb.2013.00216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Frost PC, Benstead JP, Cross WF, Hillebrand H, Larson JH, Xenopoulos MA, Yoshida T (2006) Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol Lett 9:774–779. https://doi.org/10.1111/j.1461-0248.2006.00919.x

    Article  PubMed  Google Scholar 

  13. Ge T, Liu C, Yuan H, Zhao Z, Wu X, Zhu Z, Brookes P, Wu J (2015) Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant Soil 392:17–25. https://doi.org/10.1007/s11104-014-2265-8

    CAS  Article  Google Scholar 

  14. Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones DL, Wu J, Kuzyakov Y (2016) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53:37–48. https://doi.org/10.1007/s00374-016-1155-z

    CAS  Article  Google Scholar 

  15. Hill PW, Marshall C, Williams GG, Blum H, Harmens H, Jones DL, Farrar JF (2007) The fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated CO2 and sward management. New Phytol 173:766–777. https://doi.org/10.1111/j.1469-8137.2006.01966.x

    CAS  Article  PubMed  Google Scholar 

  16. Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the k EC value. Soil Biol Biochem 28:25–31. https://doi.org/10.1016/0038-0717(95)00102-6

    CAS  Article  Google Scholar 

  17. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. https://doi.org/10.1111/j.1469-8137.2004.01130.x

    CAS  Article  Google Scholar 

  18. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. https://doi.org/10.1007/s11104-009-9925-0

    CAS  Article  Google Scholar 

  19. Karele I (2001) Chlorophyll distribution in leaves, stems, and ears in winter wheat. In: Horst et al (eds) Plant Nutrition - Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research. Developments in plant and soilsciences, vol 92. Springer, Dordrecht, pp 720–721

  20. Kaštovská E, Šantrůčková H (2007) Fate and dynamics of recently fixed C in pasture plant–soil system under field conditions. Plant Soil 300:61–69. https://doi.org/10.1007/s11104-007-9388-0

    CAS  Article  Google Scholar 

  21. Kaštovská E, Edwards K, Santruckova H (2017) Rhizodeposition flux of competitive versus conservative graminoid: contribution of exudates and root lysates as affected by N loading. Plant Soil 412:331–344. https://doi.org/10.1007/s11104-016-3066-z

    CAS  Article  Google Scholar 

  22. Kimura M, Murase J, Lu Y (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36:1399–1416. https://doi.org/10.1016/j.soilbio.2004.03.006

    CAS  Article  Google Scholar 

  23. Kirk GJD (2001) Plant-mediated processess to acquire nutrients: nitrogen uptake by rice plants. Plant Soil 232:129–134. https://doi.org/10.1023/A:1010341116376

    CAS  Article  Google Scholar 

  24. Kuzyakov Y (2002) Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods. Soil Biol Biochem 34:1621–1631. https://doi.org/10.1016/S0038-0717(02)00146-3

    CAS  Article  Google Scholar 

  25. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003

    CAS  Article  Google Scholar 

  26. Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669. https://doi.org/10.1111/nph.12235

    CAS  Article  PubMed  Google Scholar 

  27. Leake JR, Ostle NJ, Rangel-Castro JI, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl Soil Ecol 33:152–175. https://doi.org/10.1016/j.apsoil.2006.03.001

    Article  Google Scholar 

  28. Leuschner C, Gebel S, Rose L (2013) Root trait responses of six temperate grassland species to intensive mowing and NPK fertilisation: a field study in a temperate grassland. Plant Soil 373:687–698. https://doi.org/10.1007/s11104-013-1836-4

    CAS  Article  Google Scholar 

  29. Lin YC, Hu YG, Ren CZ, Guo LC, Wang CL, Jiang Y, Wang XJ, Hlatshwayo P, Zeng ZH (2013) Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. J Integr Agric 12:2164–2171. https://doi.org/10.1016/S2095-3119(13)60346-9

    Article  Google Scholar 

  30. Liu Y, Zang H, Ge T, Bai J, Lu S, Zhou P, Peng P, Shibistova O, Zhu Z, Wu J, Guggenberger G (2018) Intensive fertilization (N, P, K, Ca, and S) decreases organic matter decomposition in paddy soil. Appl Soil Ecol 127:51–57. https://doi.org/10.1016/j.apsoil.2018.02.012

    Article  Google Scholar 

  31. Liu Y, Ge T, Ye J, Liu S, Shibistova O, Wang P, Wang J, Li Y, Guggenberger G, Kuzyakov Y (2019) Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338:30–39

    CAS  Article  Google Scholar 

  32. Lu Y, Watanabe A, Kimura M (2002) Input and distribution of photosynthesized carbon in a flooded rice soil. Glob Biogeochem Cycles 16:32–31-32-38. https://doi.org/10.1029/2002gb001864

    Article  Google Scholar 

  33. Luo Y, Zhu Z, Liu S, Peng P, Xu J, Brookes P, Ge T, Wu J (2018) Nitrogen fertilization increases rice rhizodeposition and its stabilization in soil aggregates and the humus fraction. Plant Soil. https://doi.org/10.1007/s11104-018-3833-0

  34. Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:22. https://doi.org/10.3389/fmicb.2014.00022

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murphy CJ, Baggs EM, Morley N, Wall DP, Paterson E (2017) Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant Soil 417:499–510. https://doi.org/10.1007/s11104-017-3275-0

    CAS  Article  Google Scholar 

  36. Patrick WH, Mahapatra IC (1968) Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv Agron 20:323–359. https://doi.org/10.1016/s0065-2113(08)60860-3

    CAS  Article  Google Scholar 

  37. Pausch J, Kuzyakov Y (2017) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Chang Biol 24:1–12. https://doi.org/10.1111/gcb.13850

    Article  PubMed  Google Scholar 

  38. Skudra I, Ruza A (2017) Effect of nitrogen and sulphur fertilization on chlorophyll content in winter wheat. Rural Sustain Res 37:29–37. https://doi.org/10.1515/plua-2017-0004

    Article  Google Scholar 

  39. Sun Y, Xu X, Kuzyakov Y (2014) Mechanisms of rhizosphere priming effects and their ecological significance. Chin J Plant Ecol 38:62–75. https://doi.org/10.3724/sp.j.1258.2014.00007

    Article  Google Scholar 

  40. Thornton B, Paterson E, Midwood AJ, Sim A, Pratt SM (2004) Contribution of current carbon assimilation in supplying root exudates of Lolium perenne measured using steady-state 13C labelling. Physiol Plant 120:434–441. https://doi.org/10.1111/j.0031-9317.2004.00250.x

    CAS  Article  PubMed  Google Scholar 

  41. Tian J, Pausch J, Fan M, Li X, Tang Q, Kuzyakov Y (2013) Allocation and dynamics of assimilated carbon in rice-soil system depending on water management. Plant Soil 363:273–285. https://doi.org/10.1007/s11104-012-1327-z

    CAS  Article  Google Scholar 

  42. Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933. https://doi.org/10.1007/s10021-004-0149-0

    CAS  Article  Google Scholar 

  43. Warembourg FR, Estelrich HD (2000) Towards a better understanding of carbon flow in the rhizosphere: a time-dependent approach using carbon-14. Biol Fertil Soils 30:528–534. https://doi.org/10.1007/s003740050032

    CAS  Article  Google Scholar 

  44. Watanabe A, Machida N, Takahashi K, Kitamura S, Kimura M (2004) Flow of photosynthesized carbon from rice plants into the paddy soil ecosystem at different stages of rice growth. Plant Soil 258:151–160. https://doi.org/10.1023/B:PLSO.0000016545.36421.bc

    CAS  Article  Google Scholar 

  45. Wei X, Hu Y, Peng P, Zhu Z, Atere CT, O’Donnell AG, Wu J, Ge T (2017) Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biol Fertil Soils 53:767–776. https://doi.org/10.1007/s00374-017-1221-1

    CAS  Article  Google Scholar 

  46. Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction - an automated procedure. Soil Biol Biochem 22:1167–1169. https://doi.org/10.1016/0038-0717(90)90046-3

    CAS  Article  Google Scholar 

  47. Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22:737–749. https://doi.org/10.1111/geb.12029

    Article  Google Scholar 

  48. Zang H, Wang J, Kuzyakov Y (2016) N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl Soil Ecol 108:47–53. https://doi.org/10.1016/j.apsoil.2016.07.021

    Article  Google Scholar 

  49. Zang H, Blagodatskaya E, Wang J, Xu X, Kuzyakov Y (2017) Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses. Biol Fertil Soils 53:419–429. https://doi.org/10.1007/s00374-017-1194-0

    CAS  Article  Google Scholar 

  50. Zhao Z, Ge T, Gunina A, Li Y, Zhu Z, Peng P, Wu J, Kuzyakov Y (2018) Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis. Plant Soil. https://doi.org/10.1007/s11104-018-3873-5

  51. Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng W (2014) Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76:183–192. https://doi.org/10.1016/j.soilbio.2014.04.033

    CAS  Article  Google Scholar 

  52. Zhu Z, Zeng G, Ge T, Hu Y, Tong C, Shibistova O, Wang J, Guggenberger G, Wu J (2016) Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil: I. Decomposition and priming effect. Biogeosci Discuss 1–29. https://doi.org/10.5194/bg-2016-86

  53. Zhu Z, Ge T, Xiao M, Yuan H, Wang T, Liu S, Atere CT, Wu J, Kuzyakov Y (2017) Belowground carbon allocation and dynamics under rice cultivation depends on soil organic matter content. Plant Soil 410:247–258. https://doi.org/10.1007/s11104-016-3005-z

    CAS  Article  Google Scholar 

  54. Zhu Z, Ge T, Liu S, Hu Y, Ye R, Xiao M, Tong C, Kuzyakov Y, Wu J (2018) Rice rhizodeposits affect organic matter priming in paddy soil: the role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol Biochem 116:369–377. https://doi.org/10.1016/j.soilbio.2017.11.001

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key Research and Development Program (2016YFE0101100) and the Australia-China Joint Research Centre–Healthy Soils for Sustainable Food Production and Environmental Quality (ACSRF48165), the National Natural Science Foundation of China (41671292; 41771337), Hunan Province Base for Scientific and Technological Innovation Cooperation (2018WK4012), Open Fund of Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences (ISA2017301), Innovation Groups of Natural Science Foundation of Hunan Province (2019JJ10003) and the Youth Innovation Team Project of ISA, CAS (2017QNCXTD_GTD). We also thank the Public Service Technology Center, Institute of Subtropical Agriculture, and Chinese Academy of Sciences for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tida Ge.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Eric Paterson.

Electronic supplementary material

Fig. S1

(DOCX 220 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Zang, H., Liu, S. et al. Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice–soil systems: a 13C-CO2 pulse labeling study. Plant Soil 445, 101–112 (2019). https://doi.org/10.1007/s11104-019-04030-z

Download citation

Keywords

  • Paddy soil
  • Rhizodeposition
  • C flow
  • 13C-CO2 pulse labeling
  • N fertilization