Skip to main content

Soil characteristics influence species composition and forest structure differentially among tree size classes in a Bornean heath forest

Abstract

Background and aims

Whilst several studies have shown that edaphic variability influences species composition in nutrient-poor tropical forests, the determinants of local species distributions and, in particular, how these change from younger to mature individuals in such forests are still under debate, and have been poorly explored in tropical heath forests that are among the least fertile tropical forest ecosystems.

Methods

We investigated the influence of soil fertility and topography on a Bornean heath forest species composition, α-, β-diversity and tree size structure among size classes by recording all trees ≥1 cm DBH in 16 forest plots totalling 0.36 ha.

Results

Tree species distributions generally followed gradients in available Al and soil depth; α- and β-diversity were linked to soil depth, and to some extent also to pH and the H:Al ratio. In contrast, forest structural attributes (basal area and stem density) were negatively correlated with both available and total P and a wider suite of soil nutrients, although trees ≥10 cm DBH were positively correlated with total P.

Conclusion

Our study shows that heath forest species distribution, richness and structure is related to both edaphic and topographic characteristics and that soil acidity might have a strong influence in shaping these forests’ features. Among size classes, small trees are less influenced by soil and topography, whereas the sensitivity to these variables increases with tree size. We thus highlight that multiple edaphic factors influence different aspects of tropical forest structure, including different tree life stages, and species composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459

    Article  Google Scholar 

  • Abreu MF, Pinto JRR, Maracahipes L, Gomes L, DeOliveira EA, Marimon BS, Marimon BHJ, DeFarias J, Lenza E (2012) Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás state, Brazil. Brazilian J Bot 35:259–272

    Article  Google Scholar 

  • Anderson BA (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13:199–210

    Article  Google Scholar 

  • Andriesse JP (1968) A study of the environment and characteristics of tropical podzols in Sarawak (East-Malaysia). Geoderma 2:201–227

    Article  Google Scholar 

  • Andriesse JP (1975) Characteristics and formation of so-called red-yellow podzolic soils in the humid tropics (Sarawak, Malaysia). PhD thesis, University of Utrecht, Netherlands

  • Baltzer JL, Thomas SC, Nilus R, Burslem DFRP (2005) Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation. Ecology 86:3063–3077

    Article  Google Scholar 

  • Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Davies SJ, Hubbell SP, Chuyong GB, Kenfack D, Thomas DW, Dalling JW (2013) Habitat filtering across tree life stages in tropical forest communities. Proc R Soc B 20130548:280

    Google Scholar 

  • Baselga A, Orme DL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x

  • Bauters M, Verbeeck H, Doetterl S, Ampoorter E, Baert G, Vermeir P, Verheyen K, Boeckx P (2016) Functional composition of tree communities changed topsoil properties in an old experimental tropical plantation. Ecosystems 20:861–871

    Article  CAS  Google Scholar 

  • Becker P, Davies SJ, Moksin M, Ismail MZH, Simanjuntak PM (1999) Leaf size distributions of understorey plants in mixed dipterocarp and heath forests of Brunei. J Trop Ecol 15:123–128

    Article  Google Scholar 

  • Bravard S, Righi D (1989) Geochemical differences in an Oxisol-Spodosol toposequence of Amazonia, Brazil. Geoderma 44:29–42

    Article  CAS  Google Scholar 

  • Brearley FQ, Scholes J, Press M, Palfner G (2007) How does light and phosphorous fertilisation affect the growth and ectomycorrhizal community of two contrasting dipterocarp species? Plant Ecol 192:237–249

    Article  Google Scholar 

  • Brearley FQ, Fine PVA, Perreijn K (2011) Does nitrogen availability have greater control over the formation of tropical heath forests than water stress? A hypothesis based on nitrogen isotope ratios. Acta Amaz 41:589–592

    Article  CAS  Google Scholar 

  • Brűnig EF (1974) Ecological studies in the kerangas forests of Sarawak and Brunei. Borneo Literature Bureau, Kuching

  • Cai Z, Poorter L, Han Q, Bongers F (2008) Effects of light and nutrients on seedlings of tropical Bauhinia lianas and trees. Tree Physiol 28:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Cao KF (2000) Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Can J Bot 78:1245–1253

    Google Scholar 

  • Cao KF, Booth EW (2001) Leaf anatomical structure and photosynthetic induction for seedlings of five dipterocarp species under contrasting light conditions in a Bornean heath forest. J Trop Ecol 17:163–175

    Article  Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP (1998) Ancient trees in Amazonia. Nature 391:135–136

    Article  CAS  Google Scholar 

  • Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J Ecol 86:101–112

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14(9):939–947

    Article  PubMed  Google Scholar 

  • Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci U S A 110:5064–5068

    Article  PubMed  PubMed Central  Google Scholar 

  • Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95:27–40

    Article  Google Scholar 

  • Coomes DA (1997) Nutrient status of Amazonian caatinga forests in a seasonally dry area: nutrient fluxes in litter fall and analyses of soils. Can J For Res 27:831–839

    Google Scholar 

  • Condit R, Hubbell SP, Lafrankie JV, Sukumar R, Manokaran N, Foster RB, Ashton PS (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84(4):549

    Article  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Proceedings of the advanced study institute on dynamics of numbers in populations, Oosterbeek. Centre for Agricultural Publishing and Documentation, Wageningen, pp 298–312

    Google Scholar 

  • Davies SJ, Becker P (1996) Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J Trop For Sci 8:542–569

    Google Scholar 

  • Dent DH, Bagchi R, Robinson D, Majalap-Lee N, Burslem DFRP (2006) Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant Soil 288:197–215

    Article  CAS  Google Scholar 

  • Din H, Metali F, Sukri RS (2015) Tree diversity and community composition of the Tutong white sands, Brunei Darussalam: a rare tropical heath forest ecosystem. Int J Ecol 2015:807876

  • Dubroeucq D, Volkoff B (1998) From oxisols to spodosols and histosols: evolution of the soil mantles in the Rio Negro basin (Amazonia). Catena 32:245–280

    Article  Google Scholar 

  • Frasier CL, Albert VA, Struwe L (2008) Amazonian lowland, white sand areas as ancestral regions for South American biodiversity: biogeographic and phylogenetic patterns in Potalia (Angiospermae: Gentianaceae). Org Divers Evol 8:44–57

    Article  Google Scholar 

  • Fox JED (1973) A Handbook to Kabili-Sepilok Forest Reserve, Sabah Forest Record No. 9. Borneo Literature Bureau, Kuching

  • Garcia-Villacorta R, Dexter KG, Pennington T (2016) Amazonian white-sand forests show strong floristic links with surrounding oligotrophic habitats and the Guiana shield. Biotropica 48:47–57

    Article  Google Scholar 

  • Gentry A (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity, and conservation. Oxford University Press, New York

    Google Scholar 

  • Goodland R, Pollard R (1973) The Brazilian cerrado vegetation: a fertility gradient. J Ecol 61:219–224

    Article  Google Scholar 

  • Grainger J, Becker P (2001) Root architecture and root:shoot allocation of shrubs and saplings in a Bruneian heath forest. Biotropica 33:363–368

    Article  Google Scholar 

  • Haridasan M (1982) Aluminium accumulation by some cerrado native species of Central Brazil. Plant Soil 65:265–273

    Article  CAS  Google Scholar 

  • Haridasan M (2008) Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz J Plant Physiol 20:183–195

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Jabot F, Etienne RS, Chave J (2008) Reconciling neutral community models and environmental filtering: theory and an empirical test. Oikos 117(9):1308–1320

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Janzen DH (1974) Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6:69–103

    Article  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci 104:864–869

    Article  CAS  PubMed  Google Scholar 

  • Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, Phillips OL, Qie L, Coomes DA (2018) Topography shapes the structure, composition and function of tropical forest landscapes. Ecol Lett 21:989–1000

    Article  PubMed  Google Scholar 

  • Kenzo T, Furutani R, Hattori D, Tanaka S, Sakurai K, Ninomiya I, Kendawang JJ (2014) Aboveground and belowground biomass in logged-over tropical rain forests under different soil conditions in Borneo. J For Res 20:197–205

    Article  CAS  Google Scholar 

  • Kidd PS, Proctor J (2000) Effects of aluminium on the growth and mineral composition of Betula pendula Roth. J Exp Bot 51:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Proctor J (2001) Why plants grow poorly on very acid soils: are ecologists missing the obvious? J Exp Bot 52:791–799

    Article  CAS  PubMed  Google Scholar 

  • Kinraide T (1993) Aluminum enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. Physiol Plant 88:619–625

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa H, Yoshida T, Nakamura T, Lai J, Nakashizuka T (2003) The age of tropical rain-forest canopy species, Borneo ironwood (Eusideroxylon zwageri), determined by 14C dating. J Trop Ecol 19:1–7

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. http://www.jstor.org/stable/27651550

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Luizao FJ (1996) Ecological studies in contrasting forest types in central Amazonia. PhD Thesis, University of Stirling

  • Luizao FJ, Luizao RC, Proctor J (2007) Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecol 192:209–224

    Article  Google Scholar 

  • Luizao RCC (1994) Soil biological studies in contrasting types of vegetation in central Amazonian rain forest. PhD Thesis, University of Stirling

  • Medina E, Cuevas E (1989) Patterns of nutrient accumulation and release in Amazonian forests of the upper Rio Negro basin. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific Publications, Oxford, pp 217–240

    Google Scholar 

  • Metali F, Abu Salim K, Tennakoon K, Burslem DFRP (2015) Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements. New Phytol 205:280–292

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Suzuki E, Kohyama T, Seino T, Mirmanto E, Simbolon H (2003) Habitat differentiation among tree species with small-scale variation of humus depth and topography in a tropical heath forest of Central Kalimantan, Indonesia. J Trop Ecol 19:43–54

    Article  Google Scholar 

  • Miyamoto K, Rahajoe J, Kohyama T, Mirmanto E (2007) Forest structure and primary productivity in a Bornean heath forest. Biotropica 39:35–42

    Article  Google Scholar 

  • Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012) Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111:601–614

    Article  CAS  Google Scholar 

  • Newbery DM (1991) Floristic variation within kerangas (heath) forest: re-evaluation of data from Sarawak and Brunei. Vegetatio 96:43–86

    Article  Google Scholar 

  • Newbery DM, Renshaw E, Brunig EF (1986) Spatial pattern of trees in kerangas forest, Sarawak. Vegetatio 15:773–781

    Google Scholar 

  • Newbery DM, Proctor J (1984) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak: IV. Associations between tree distribution and soil factors. J Ecol 72:475–495

    Article  Google Scholar 

  • Nilus R (2003) Effect of edaphic variation on forest structure, dynamics and regeneration in a lowland tropical rainforest in Borneo. PhD Thesis, University of Aberdeen

  • Nilus R, Maycock CR, Majalap-Lee N, Burslem DFRP (2011) Nutrient limitation of tree seedling growth in three soil types found in Sabah. J Trop For Sci 23:133–142. https://www.jstor.org/stable/23616913

  • Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial. R package version 2.4–5

  • Oktavia D, Setiadi Y, Hilwan I (2015) The comparison of soil properties in heath forest and post-tin mined land: basic for ecosystem restoration. Procedia Environ Sci 28:124–131

    Article  Google Scholar 

  • Ong RC, Petol GH, Nilus R, Pereira JT, Ping LS (1998) Sabah biodiversity conservation project: The kerangas forest of Nabawan. A botanical assessment and recommendations for conservation. Forestry Research Center, Sabah Forestry Department, Sandakan, Sabah, Malaysia

  • Osaki M, Watanabe T, Tadano T (1997) Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Sci Plant Nutr 43:37–41

    Google Scholar 

  • Paoli GD, Curran LM, Slik JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287–299

    Article  PubMed  Google Scholar 

  • Paoli GD, Curran LM, Zak DR (2006) Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. J Ecol 94:157–170

    Article  CAS  Google Scholar 

  • Peace WJH, Macdonald FD (1981) An investigation of the leaf anatomy, foliar mineral levels, and water relations of trees of a Sarawak forest. Biotropica 13:100–109

    Article  Google Scholar 

  • Peña-Claros M, Poorter L, Alarcon A, Blate G, Choque U, Fredericksen TS, Justiniano MJ, Leano C, Licona JC, Pariona W, Putz FE, Quevedo L, Toledo M (2012) Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44:276–283

    Article  Google Scholar 

  • Phillips OL, Vargas PN, Lorenzo A, Cruz AP, Chuspe M, Sánchez WG, Yli-halla M, Rose S (2003) Habitat association among Amazonian tree species : a landscape-scale approach. J Ecol 91:757–775

    Article  Google Scholar 

  • Potts MD, Ashton PS, Kaufman LK, Plotkin JB (2002) Habitat patterns in tropical rain forests: a comparison of 105 plots in Northwest Borneo. Ecology 83:2782–2797

    Article  Google Scholar 

  • Proctor J (1999) Heath forests and acid soils. Bot J Scotl 51:1–14

    Article  Google Scholar 

  • Proctor J, Anderson JM, Chai P, Vallack HW (1983) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak: I. Forest environment, structure and floristics. J Ecol 71:237–260

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Richards PW (1936) Ecological observations on the rainforest of Mount Dulit, Sarawak. Part III. J Ecol 24:340–360

    Article  CAS  Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meilleres ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Russo SE, Davies SJ, King DA Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889

    Article  CAS  Google Scholar 

  • Shenbrot GI, Rogovin KA, Surov AV (1991) Comparative analysis of spatial organization of desert lizard communities in middle Asia and Mexico. Oikos 61:157–168

    Article  Google Scholar 

  • Silva AC, Silva JL, Souza AF (2016) Determinants of variation in heath vegetation structure on coastal dune fields in northeastern South America. Brazilian J Bot 39:605–612

    Article  Google Scholar 

  • Slik JWF, Raes N, Aiba SI, Brearley FQ, Cannon CH, Meijaard E, Nagamasu H, Nilus R, Paoli G, Poulsen AD, Sheil D, Suzuki E, van Valkenburg JLCH, Webb CO, Wilkie P, Wulffraat S (2009) Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers Distrib 15:523–532

    Article  Google Scholar 

  • Soares MP, Reys P, Pifano DS, deSa JL, da Silva PO, Santos TM, Silva FG (2015) Relationship between edaphic factors and vegetation in savannas of the Brazilian Midwest region. Rev Bras Ciênc Solo 39:821–829

  • ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prevost MF, Spichiger R, Castellanos H, von Hildebrand P, Vasquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  CAS  PubMed  Google Scholar 

  • Sukri RS, Wahab RA, Salim KA, Burslem DFRP (2012) Habitat associations and community structure of dipterocarps in response to environment and soil conditions in Brunei Darussalam, Northwest Borneo. Biotropica 44:595–605

    Article  Google Scholar 

  • Sellan G (2019) Ecological responses of a Bornean heath forest to experimental lime and nitrogen fertilisation. PhD thesis, Manchester Metropolitan University

  • Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675

    Article  Google Scholar 

  • Turner IM, Lucas PW, Becker P, Wong SC, Yong JWH, Choong MF, Tyree T (2000) Tree leaf form in Brunei: a heath forest and a mixed dipterocarp forest compared. Biotropica 32:53–61

    Article  Google Scholar 

  • Turner BL, Brenes-Arguedas T, Condit R (2018) Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555:367–370

    Article  CAS  PubMed  Google Scholar 

  • Van Reeuwijk LP (2002) Procedures for soil analysis, 6th edition. International Soil Reference and Information Centre. Wageningen, The Netherlands

  • Vernimmen RRE, Bruijnzeel LA, Romdoni A, Proctor J (2007) Rainfall interception in three contrasting lowland rain forest types in Central Kalimantan, Indonesia. J Hydrol 340(3-4):217–232

    Article  Google Scholar 

  • Vernimmen RRE, Bruijnzeel LA, Proctor J, Verhoef HA, Klomp NS (2013) Does water stress, nutrient limitation, or H-toxicity explain the differential stature among heath forest types in Central Kalimantan, Indonesia? Biogeochemistry 113:385–408

    Article  CAS  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255:35–48

    Article  Google Scholar 

  • Whitmore TC (1990) An introduction to tropical rain forests. Clarendon Press, Oxford

    Google Scholar 

  • Whitmore TC (1984) Tropical rain forests of the Far East, 2nd edn. Clarendon Press, Oxford

  • Wright JJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  PubMed  Google Scholar 

  • Wuenscher R, Unterfrauner H, Peticzka R, Zehetner F (2015) A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ 61:86–96

    Article  CAS  Google Scholar 

  • Xu W, Hao M, Wang J, Zhang C, Zhao X, von Gadow K (2016) Soil elements influencing community structure in an old-growth forest in northeastern China. Forests 7:159

  • Yang QS, Shen GC, Liu HM, Wang ZH, Ma ZP, Fang XF, Zhang J, Wang XH (2016) Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species: life stage matters. PLoS One 11:e0156326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li X, Chen L, Xie G, Liu C, Pei S (2016) Effects of topographical and edaphic factors on tree community structure and diversity of subtropical mountain forests in the lower Lancang river basin. Forests 7:222

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Manchester Metropolitan University’s Environmental Science Research Centre. We would like to thank the Sabah Biodiversity Council, the Soil Chemistry section, Ecology section and Herbarium staff from Sabah Forest Research Centre and in particular the research assistants Juanis Runcin, Jemson Jumian, Postar Miun, Spincer Sitim, Lioba Sawadon and Yun Len Lee. We are indebted to David McKendry and Graham Tinsley for the assistance in the laboratory, Yannis Kougoulous for preparing the map and Liam Trethowan, Matteo Giacomazzo and anonymous reviewers for the valuable suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Sellan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Hans Lambers.

Electronic supplementary material

ESM 1

(DOCX 648 kb)

ESM 2

(DOCX 70 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sellan, G., Thompson, J., Majalap, N. et al. Soil characteristics influence species composition and forest structure differentially among tree size classes in a Bornean heath forest. Plant Soil 438, 173–185 (2019). https://doi.org/10.1007/s11104-019-04000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04000-5

Keywords

  • Al toxicity
  • Kabili-Sepilok Forest Reserve
  • Kerangas
  • Nutrient limitation
  • Species diversity
  • Spodosol
  • White sand forest