Water use dynamics of dryland canola (Brassica napus L.) grown on contrasting soils under elevated CO2

Abstract

Background and aims

Increasing atmospheric carbon dioxide concentration ([CO2]) stimulates the leaf-level (intrinsic) water use efficiency (iWUE), which may mitigate the adverse effects of drought by lowering water use in plants. This study investigated the interactive effect of [CO2] and soil type on growth, yield and water use of canola (Brassica napus L.) in a dryland environment.

Methods

Two canola cultivars (vigorous hybrid cv. ‘Hyola 50’ and non-hybrid cv. ‘Thumper’) were grown in large intact soil cores containing either a sandy Calcarosol or clay Vertosol under current ambient (a[CO2]) and future elevated [CO2] (e[CO2]), ∼550 μmol mol−1). Net assimilation rates (Anet), stomatal conductance (gs) and leaf area were measured throughout the growing season. Seed yield and yield components were recorded at final harvest. Water use was monitored by lysimeter balances.

Results

Elevated [CO2]-stimulation of iWUE was greater than the effect on leaf area, therefore, water use was lower under e[CO2] than a[CO2], but this was further modified by soil type and cultivar. The dynamics of water use throughout the growing season were different between the studied cultivars and in line with their leaf development. The effect of e[CO2] on seed yield was dependent on cultivar; the non-hybrid cultivar benefitted more from increased [CO2]. Although textural differences between soil types influenced the water use under e[CO2], this did not affect the ‘CO2 fertilisation effect’ on the studied canola cultivars.

Conclusion

Elevated [CO2]-induced water savings observed in the present study is a potential mechanism of ameliorating drought effects in high CO2 environment. Better understanding of genotypic variability in response to water use dynamics with traits affecting assimilate supply and use can help breeders to improve crop germplasm for future climates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

[CO2]:

Atmospheric carbon dioxide concentration

e[CO2]:

Elevated [CO2]

a[CO2]:

Ambient [CO2]

FACE:

Free Air CO2 Enrichment

AGFACE:

Australian Grains FACE

SoilFACE:

Soil FACE

MEA:

Measurement Engineering Australia

Anet :

Net CO2 assimilation rate

gs :

Stomatal conductance

iWUE:

Intrinsic water use efficiency

DAS:

Days after sowing

RMSE:

Root means squared error

TSY:

Total seed yield in g plant−1

SSN:

Sound seed number siliqua−1

SSW:

Mean individual sound seed weight

SNP:

Siliqua number plant−1

P:

Precipitation

I:

Irrigation

D:

Deep drainage from the root zone

CR:

Capillary rise to the root zone

R:

Runoff

SWD:

Soil water depletion

Min temp:

Minimum temperature

Max temp:

Maximum temperature

ETo :

Reference evapotranspiration

EC:

Electrical conductivity

ESP:

Exchangeable sodium percentage

PBI:

Phosphorus buffering index

RH:

Relative humidity

VPD:

Vapour pressure deficit

GSR:

Global solar radiation

References

  1. Adcock D, McNeill AM, McDonald GK, Armstrong RD (2007) Subsoil constraints to crop production on neutral and alkaline soils in south-eastern Australia: a review of current knowledge and management strategies. Aust J Exp Agric 47:1245–1261. https://doi.org/10.1071/ea06250

    Article  CAS  Google Scholar 

  2. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371. https://doi.org/10.1111/j.1469-8137.2004.01224.x.

    Article  PubMed  Google Scholar 

  3. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell and Environment 30:258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

    Article  CAS  Google Scholar 

  4. Angus JF (2001) Nitrogen supply and demand in Australian agriculture. Aust J Exp Agric 41:277–288. https://doi.org/10.1071/ea00141

    Article  CAS  Google Scholar 

  5. Armstrong A, Bourgault M, Lam SK (2015) Soil type influences N2 fixation in fieldpeas more than elevated CO2. “Building Productive, Diverse and Sustainable Landscapes”. In: Acuña T, Moeller C, Parsons D, Harrison M (eds) Proceedings of the 17th Australian Agronomy Conference 2015, 21–24 September 2015. Hobart, Tasmania, pp 721–724

    Google Scholar 

  6. Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Cotrufo MF (2013) Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol 197:544–554. https://doi.org/10.1111/nph.12044

    Article  CAS  PubMed  Google Scholar 

  7. Benlloch-Gonzalez M, Bochicchio R, Berger J, Bramley H, Palta JA (2014) High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crop Res 165:71–79. https://doi.org/10.1016/j.fcr.2014.04.008

    Article  Google Scholar 

  8. Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144. https://doi.org/10.1104/pp.106.089557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt soybean (Glycine max Merr.) to future CO2? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell and Environ 38:1765–1774. https://doi.org/10.1111/pce.12443

    Article  Google Scholar 

  10. Brandt SA, Malhi SS, Ulrich D, Lafond GR, Kutcher HR, Johnston AM (2007) Seeding rate, fertilizer level and disease management effects on hybrid versus open pollinated canola (Brassica napus L.). Can J Plant Sci 87:255–266

    Article  Google Scholar 

  11. Bunce JA (2016) Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems. Field Crop Res 186:78–85. https://doi.org/10.1016/j.fcr.2015.11.010

    Article  Google Scholar 

  12. Bureau of Meteorology (2017) Climate Data Online database (Horsham Polkemmet Rd VIC). URL: http://www.bom.gov.au/climate/data/. Last Accessed 26 August 2017

  13. Burkart S, Manderscheid R, Wittich KP, Loepmeier FJ, Weigel HJ (2011) Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Plant Biol 13:258–269. https://doi.org/10.1111/j.1438-8677.2010.00360.x

    Article  CAS  PubMed  Google Scholar 

  14. Butterly CR, Armstrong R, Chen D, Tang C (2015) Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant Soil 391:367–382. https://doi.org/10.1007/s11104-015-2441-5

    Article  CAS  Google Scholar 

  15. Butterly CR, Phillips LA, Wiltshire JL, Franks AE, Armstrong RD, Chen DL, Mele PM, Tang CX (2016) Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. Soil Biol Biochem 97:157–167. https://doi.org/10.1016/j.soilbio.2016.03.010

    Article  CAS  Google Scholar 

  16. Christy B, Tausz-Posch S, Tausz M, Richards R, Rebetzke G, Condon A, McLean T, Fitzgerald G, Bourgault M, O'Leary G (2018) Benefits of increasing transpiration efficiency in wheat under elevated CO2 for rainfed regions. Glob Chang Biol 24:1965–1977. https://doi.org/10.1111/gcb.14052

    Article  PubMed  Google Scholar 

  17. Chun JA, Wang Q, Timlin D, Fleisher D, Reddy VR (2011) Effect of elevated carbon dioxide and water stress on gas exchange and water use efficiency in corn. Agric For Meteorol 151:378–384. https://doi.org/10.1016/j.agrformet.2010.11.015

    Article  Google Scholar 

  18. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    Article  PubMed  Google Scholar 

  19. FAOSTAT (2018) Food and Agriculture Organization of the United Nations Statistics Division. Available at: http://www.fao.org/faostat/en/#home (Accessed 21 February 2018).

  20. Faralli M, Grove IG, Hare MC, Boyle RD, Williams KS, Corke FMK, Kettlewell PS (2016) Canopy application of film antitranspirants over the reproductive phase enhances yield and yield-related physiological traits of water-stressed oilseed rape (Brassica napus). Crop & Pasture Sci 67:751–765. https://doi.org/10.1071/cp15421

    Article  CAS  Google Scholar 

  21. Faralli M, Grove IG, Hare MC, Kettlewell PS, Fiorani F (2017) Rising CO2 from historical concentrations enhances the physiological performance of Brassica napus seedlings under optimal water supply but not under reduced water availability. Plant Cell and Environ 40:317–325. https://doi.org/10.1111/pce.12868

    Article  CAS  Google Scholar 

  22. Franzaring J, Högy P, Fangmeier A (2008) Effects of free-air CO2 enrichment on the growth of summer oilseed rape (Brassica napus cv. Campino). Agric Ecosyst Environ 128:127–134. https://doi.org/10.1016/j.agee.2008.05.011

    Article  CAS  Google Scholar 

  23. Franzaring J, Weller S, Schmid I, Fangmeier A (2011) Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2. Environ Exp Bot 72:284–296. https://doi.org/10.1016/j.envexpbot.2011.04.003

    Article  Google Scholar 

  24. Gray SB, Dermody O, Klein SP, Locke AM, McGrath JM, Paul RE, Rosenthal DM, Ruiz-Vera UM, Siebers MH, Strellner R, Ainsworth EA, Bernacchi CJ, Long SP, Ort DR, Leakey ADB (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants 2: 16132. https://doi.org/10.1038/nplants.2016.132 http://www.nature.com/articles/nplants2016132#supplementary-information. Accessed 5 Oct 2018

  25. Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370. https://doi.org/10.2134/agronj2010.0303

    Article  Google Scholar 

  26. Hess L, Meir P, Bingham IJ (2015) Comparative assessment of the sensitivity of oilseed rape and wheat to limited water supply. Ann Appl Biol 167:102–115. https://doi.org/10.1111/aab.12212

    Article  Google Scholar 

  27. Högy P, Franzaring J, Schwadorf K, Breuer J, Schuetze W, Fangmeier A (2010) Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agric Ecosyst Environ 139:239–244. https://doi.org/10.1016/j.agee.2010.08.009

    Article  Google Scholar 

  28. Hussain MZ, Vanloocke A, Siebers MH, Ruiz-Vera UM, Markelz RJC, Leakey ADB, Ort DR, Bernacchi CJ (2013) Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Glob Chang Biol 19:1572–1584. https://doi.org/10.1111/gcb.12155

    Article  PubMed  Google Scholar 

  29. IPCC (2013) Technical summary. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  30. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, and New York, pp 485–533

    Google Scholar 

  31. Isbell RF (1996) The Australian soil classification. CSIRO Publishing, Melbourne

    Google Scholar 

  32. Jin ZN, Ainsworth EA, Leakey ADB, Lobell DB (2018) Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob Chang Biol 24:E522–E533. https://doi.org/10.1111/gcb.13946

    Article  PubMed  Google Scholar 

  33. Johannessen MM, Mikkelsen TN, Jorgensen RB (2002) CO2 exploitation and genetic diversity in winter varieties of oilseed rape (Brassica napus); varieties of tomorrow. Euphytica 128:75–86

    Article  Google Scholar 

  34. Kim SH, Sicher RC, Bae H, Gitz DC, Baker JT, Timlin DJ, Reddy VR (2006) Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Glob Chang Biol 12:588–600. https://doi.org/10.1111/j.1365-2486.2006.01110.x

    Article  Google Scholar 

  35. Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol 31:36–43. https://doi.org/10.1016/j.pbi.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  36. Kimball BA, Pinter PJ, Garcia RL, LaMorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F, Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Glob Chang Biol 1:429–442. https://doi.org/10.1111/j.1365-2486.1995.tb00041.x

    Article  Google Scholar 

  37. Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008a) Break crop benefits in temperate wheat production. Field Crop Res 107:185–195. https://doi.org/10.1016/j.fcr.2008.02.010

    Article  Google Scholar 

  38. Kirkegaard JA, Sprague SJ, Dove H, Kelman WM, Marcroft SJ, Lieschke A, Howe GN, Graham JM (2008b) Dual-purpose canola - a new opportunity in mixed farming systems. Aust J Agric Res 59:291–302. https://doi.org/10.1071/ar07285

    Article  Google Scholar 

  39. Kirkegaard JA, Sprague SJ, Lilley JM, McCormick JI, Virgona JM, Morrison MJ (2012) Physiological response of spring canola (Brassica napus) to defoliation in diverse environments. Field Crop Res 125:61–68. https://doi.org/10.1016/j.fcr.2011.08.013

    Article  Google Scholar 

  40. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. https://doi.org/10.1093/jxb/erp096

    Article  CAS  PubMed  Google Scholar 

  41. Li S-X, Wang Z-H, Malhi SS, Li S-Q, Gao Y-J, Tian X-H (2009) Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Adv Agron 102:223–265. https://doi.org/10.1016/S0065-2113(09)01007-4

    Article  CAS  Google Scholar 

  42. Li DX, Liu HL, Qiao YZ, Wang YN, Cai ZM, Dong BD, Shi CH, Liu YY, Li X, Liu MY (2013) Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agric Water Manag 129:105–112. https://doi.org/10.1016/j.agwat.2013.07.014

    Article  Google Scholar 

  43. Liu HJ, Yang LX, Wang YL, Huang JY, Zhu JG, Wang YX, Dong GC, Liu G (2008) Yield formation of CO2 enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crop Res 108:93–100. https://doi.org/10.1016/j.fcr.2008.03.007

    Article  Google Scholar 

  44. Ludwig F, Asseng S (2006) Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agric Syst 90:159–179. https://doi.org/10.1016/j.agsy.2005.12.002

    Article  Google Scholar 

  45. Ma BL, Biswas DK, Herath AW, Whalen JK, Ruan SQ, Caldwell C, Earl H, Vanasse A, Scott P, Smith DL (2015) Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. J Plant Nutr Soil Sci 178:658–670. https://doi.org/10.1002/jpln.201400280

    Article  CAS  Google Scholar 

  46. Maaz T, Wulfhorst JD, McCracken V, Kirkegaard J, Huggins DR, Roth I, Kaur H, Pan W (2018) Economic, policy, and social trends and challenges of introducing oilseed and pulse crops into dryland wheat cropping systems. Agric Ecosyst Environ 253:177–194. https://doi.org/10.1016/j.agee.2017.03.018

    Article  Google Scholar 

  47. Manderscheid R, Weigel H-J (2007) Drought stress effects on wheat are mitigated by atmospheric CO2 enrichment. Agron Sustain Dev 27:79–87. https://doi.org/10.1051/agro:2006035

    Article  Google Scholar 

  48. Manea A, Leishman MR (2014) Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system. PLoS One 9:e91046. https://doi.org/10.1371/journal.pone.0091046

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mollah M, Norton R, Huzzey J (2009) Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop & Pasture Science 60:697–707. https://doi.org/10.1071/cp08354

    Article  CAS  Google Scholar 

  50. Morison JIL, Gifford RM (1984) Plant-growth and water-use with limited water-supply in high CO2 concentrations .1. Leaf-area, water-use and transpiration. Aust J Plant Physiol 11:361–374

    Google Scholar 

  51. NOAA (2018) National Oceanic and Atmospheric Administration, https://www.esrl.noaa.gov/gmd/ccgg/trends/monthly.html; Accessed June 30, 2018.

  52. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2018) Nlme: linear and nonlinear mixed effects models. R package version 3.1–131.1, https://CRAN.R-project.org/package=nlme. Accessed 12 Sept 2018

  53. Qaderi MM, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiol Plant 125:247–259. https://doi.org/10.1111/j.1399-3054.2005.00566.x

    Article  CAS  Google Scholar 

  54. Qiao YZ, Zhang HZ, Dong BD, Shi CH, Li YX, Zhai HM, Liu MY (2010) Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes. Agric Water Manag 97:1742–1748. https://doi.org/10.1016/j.agwat.2010.06.007

    Article  Google Scholar 

  55. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Retrieved from https://www.R-project.org/. Accessed 10 Apr 2018

  56. Rebetzke GJ, Kirkegaard JA, Watt M, Richards RA (2014) Genetically vigorous wheat genotypes maintain superior early growth in no-till soils. Plant Soil 377:127–144. https://doi.org/10.1007/s11104-013-1985-5

    Article  CAS  Google Scholar 

  57. Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7:920–924. https://doi.org/10.1038/ngeo2284

    Article  CAS  Google Scholar 

  58. Ruhil K, Sheeba AA, Iqbal M, Tripathy BC (2015) Photosynthesis and growth responses of mustard (Brassica juncea L. cv Pusa bold) plants to free air carbon dioxide enrichment (FACE). Protoplasma 252:935–946. https://doi.org/10.1007/s00709-014-0723-z

    Article  CAS  PubMed  Google Scholar 

  59. Samarakoon AB, Gifford RM (1995) Soil water content under plants at high CO2 concentration and interactions with the direct CO2 effects: a species comparison. J Biogeogr 22:193–202. https://doi.org/10.2307/2845910

    Article  Google Scholar 

  60. Samarakoon AB, Muller WJ, Gifford RM (1995) Transpiration and leaf-area under elevated CO2 effects of soil-water status and genotype in wheat. Aust J Plant Physiol 22:33–44

    Google Scholar 

  61. Sinaki JM, Heravan EM, Rad AHS, Noormohammadi G, Zarei G (2007) The effects of water deficit during growth stages of canola (Brassica napus L.). Am Eurasian J Agric Environ Sci 2: 417–422

  62. Tausz M, Tausz-Posch S, Norton RM, Fitzgerald GJ, Nicolas ME, Seneweera S (2013) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ Exp Bot 88:71–80. https://doi.org/10.1016/j.envexpbot.2011.12.005

    Article  CAS  Google Scholar 

  63. Tausz-Posch S, Norton RM, Seneweera S, Fitzgerald GJ, Tausz M (2013) Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO2 world? A FACE study. Physiol Plant 148:232–245. https://doi.org/10.1111/j.1399-3054.2012.01701.x

    Article  CAS  PubMed  Google Scholar 

  64. Tausz-Posch S, Dempsey RW, Seneweera S, Norton RM, Fitzgerald G, Tausz M (2015) Does a freely tillering wheat cultivar benefit more from elevated CO2 than a restricted tillering cultivar in a water-limited environment? Eur J Agron 64:21–28. https://doi.org/10.1016/j.eja.2014.12.009

    Article  Google Scholar 

  65. Tesfamariam EH, Annandale JG, Steyn JM (2010) Water stress effects on winter canola growth and yield. Agron J 102:658–666. https://doi.org/10.2134/agronj2008.0043

    Article  Google Scholar 

  66. Turner NC, Asseng S (2005) Productivity, sustainability, and rainfall-use efficiency in Australian rainfed Mediterranean agricultural systems. Aust J Agric Res 56:1123–1136. https://doi.org/10.1071/ar05076

    Article  Google Scholar 

  67. Uddin S, Löw M, Parvin S, Fitzgerald G, Bahrami H, Tausz-Posch S, Armstrong R, O’Leary G, Tausz M (2018a) Water use and growth responses of dryland wheat grown under elevated [CO2] are associated with root length in deeper, but not upper soil layer. Field Crop Res 224:170–181. https://doi.org/10.1016/j.fcr.2018.05.014

    Article  Google Scholar 

  68. Uddin S, Löw M, Parvin S, Fitzgerald GJ, Tausz-Posch S, Armstrong R, Tausz M (2018b) Yield of canola (Brassica napus L.) benefits more from elevated CO2 when access to deeper soil water is improved. Environ Exp Bot 155:518–528. https://doi.org/10.1016/j.envexpbot.2018.07.017

    Article  Google Scholar 

  69. Uddin S, Parvin S, Löw M, Fitzgerald GJ, Tausz-Posch S, Armstrong R, Tausz M (2018c) The water use dynamics of canola cultivars grown under elevated CO2 are linked to their leaf area development. J Plant Physiol 229:164–169. https://doi.org/10.1016/j.jplph.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  70. van Herwaarden AF, Farquhar GD, Angus JF, Richards RA, Howe GN (1998) 'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser - I. Biomass, grain yield, and water use. Aust J Agric Res 49:1067–1081

    Article  Google Scholar 

  71. Wall GW (2001) Elevated atmospheric CO2 alleviates drought stress in wheat. Agric Ecosyst Environ 87:261–271. https://doi.org/10.1016/s0167-8809(01)00170-0

    Article  CAS  Google Scholar 

  72. Watson J, Zheng BY, Chapman S, Chenu K (2017) Projected impact of future climate on water-stress patterns across the Australian wheatbelt. J Exp Bot 68:5907–5921. https://doi.org/10.1093/jxb/erx368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weigel HJ, Manderscheid R (2012) Crop growth responses to free air CO2 enrichment and nitrogen fertilization: rotating barley, ryegrass, sugar beet and wheat. Eur J Agron 43:97–107. https://doi.org/10.1016/j.eja.2012.05.011

    Article  Google Scholar 

  74. Wu DX, Wang GX, Bai YF, Liao JX (2004) Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ 104:493–507. https://doi.org/10.1016/j.agee.2004.01.018

    Article  Google Scholar 

  75. Yang LX, Liu HJ, Wang YX, Zhu JG, Huang JY, Liu G, Dong GC, Wang YL (2009) Yield formation of CO2-enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate. Agric Ecosyst Environ 129:193–200. https://doi.org/10.1016/j.agee.2008.08.016

    Article  Google Scholar 

  76. Yang YM, Liu DL, Anwar MR, O'Leary G, Macadam I, Yang YH (2016) Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type. Theor Appl Climatol 123:565–579. https://doi.org/10.1007/s00704-015-1376-3

    Article  Google Scholar 

  77. Yoshimoto M, Oue H, Kobayashi K (2005) Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agric For Meteorol 133:226–246. https://doi.org/10.1016/j.agrformet.2005.09.010

    Article  Google Scholar 

  78. Zeleke KT, Luckett DJ, Cowley RB (2014) The influence of soil water conditions on canola yields and production in southern Australia. Agric Water Manag 144:20–32. https://doi.org/10.1016/j.agwat.2014.05.016

    Article  Google Scholar 

  79. Zhang HP, Flottmann S (2016) Seed yield of canola (Brassica napus L.) is determined primarily by biomass in a high-yielding environment. Crop & Pasture Sci 67:369–380. https://doi.org/10.1071/cp15236

    Article  Google Scholar 

  80. Zhao J, Xue Q, Jessup KE, Hao B, Hou X, Marek TH, Xu W, Evett SR, O’Shaughnessy SA, Brauer DK (2018) Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crop Res 216:1–9. https://doi.org/10.1016/j.fcr.2017.11.001.

    Article  Google Scholar 

  81. Zhu C, Xu X, Wang D, Zhu J, Liu G (2015) An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Sci Rep 5:12719. https://doi.org/10.1038/srep12719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ziska LH, Yang J, Tomecek MB, Beggs PJ (2016) Cultivar-specific changes in peanut yield, biomass, and allergenicity in response to elevated atmospheric carbon dioxide concentration. Crop Sci 56:2766–2774. https://doi.org/10.2135/cropsci2015.12.0741

    Article  CAS  Google Scholar 

  83. Zotarelli L, Dukes MD, Barreto TP (2010) Interpretation of soil moisture content to determine soil field capacity and avoid over-irrigating sandy soils using soil moisture sensors. Published: 2010 Publisher: The Agricultural and Biological Engineering Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida (AE460).

Download references

Acknowledgements

The Australian Grains Free Air CO2 Enrichment (AGFACE) programme was jointly run by the University of Melbourne and Agriculture Victoria Research (Department of Economic Development, Jobs, Transport and Resources) with substantial funding from the Grains Research and Development Corporation and the Australian Department of Agriculture and Water Resources. The authors gratefully acknowledge the contributions of the AGFACE field team lead by Russel Argall, Mel Munn and Roger Perris (all Agriculture Victoria) for collecting soil water data and helping to manage the experiment, Samuel Henty and Maryse Bourgault (University of Melbourne) for field support and Mahabubur Mollah for operating the CO2 enrichment technology. SU was supported by a Melbourne International Research Scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shihab Uddin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Rafael S. Oliveira.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uddin, S., Parvin, S., Löw, M. et al. Water use dynamics of dryland canola (Brassica napus L.) grown on contrasting soils under elevated CO2. Plant Soil 438, 205–222 (2019). https://doi.org/10.1007/s11104-019-03987-1

Download citation

Keywords

  • Climate change
  • Dryland agriculture
  • FACE
  • CO2 fertilisation effect
  • Water use
  • Intrinsic water use efficiency