Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives

Abstract

Background

To improve plant phosphorus (P)-acquisition efficiency to secure sustainable food production, an important step is to increase the concentration of plant-available P in the rhizosphere. Root exudation of organic anions is a key strategy in mobilizing less-available soil P.

Scope

This review covers how organic anions (carboxylates) mobilize soil P and research methodologies applied. It then discusses the root-release of organic anions induced by low P availability and their contribution to soil P mobilization and plant P acquisition, and highlights the impact, challenges and perspectives in this research area.

Conclusions

The release of organic anions is increased considerably in some plant species, but very little in others under low P availability. Rhizosphere organic anions play important roles in increasing plant-available P, but the contribution is greatly affected by many factors. In future research, improved and ecologically meaningful root exudation sampling methods, the use of mature leaf manganese (Mn) concentration or total 14C exudation as a proxy for rhizosphere carboxylates, case-by-case field experiments, molecular mechanisms underpinning organic anion biosynthesis and efflux under low P availability warrant further attention. Finally, carbon costs and multiple root trait combinations (e.g., root hairs plus root exudation) should be considered in crop breeding programs to generate more P-efficient cultivars.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol (Stuttg) 3:139–148

    CAS  Google Scholar 

  2. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Barrow NJ, Debnath A, Sen A (2018) Mechanisms by which citric acid increases phosphate availability. Plant Soil 423:193–204

    CAS  Google Scholar 

  4. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    CAS  Google Scholar 

  5. Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68

    PubMed  CAS  Google Scholar 

  6. Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    CAS  Google Scholar 

  7. Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319

    CAS  Google Scholar 

  8. Bouwman A, Beusen A, Lassaletta L, Van Apeldoorn D, Van Grinsven H, Zhang J (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep 7:40366

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Boyer JN, Groffman PM (1996) Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biol Biochem 28(6):783–790

    CAS  Google Scholar 

  10. Brown LK, George TS, Dupuy LX, White PJ (2013) A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann Bot 112:317–330

    PubMed  CAS  Google Scholar 

  11. Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601

    PubMed  CAS  Google Scholar 

  12. Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    CAS  Google Scholar 

  13. Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149

    CAS  Google Scholar 

  14. Chen ZC, Liao H (2016) Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J Genet Genomics 43:631–638

    PubMed  Google Scholar 

  15. Cheng L, Bucciarelli B, Shen J, Allan D, Vance CP (2011) Update on white lupin cluster root acclimation to phosphorus deficiency update on lupin cluster roots. Plant Physiol 156:1025–1032

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Cheng L, Tang X, Vance CP, White PJ, Zhang F, Shen J (2014) Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot 65:2995–3003

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    PubMed  CAS  Google Scholar 

  18. Cordell D, White S (2014) Life’s bottleneck: sustaining the world's phosphorus for a food secure future. Annu Rev Environ Resour 39:161–188

    Google Scholar 

  19. Cordell D, White S (2015) Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security 7:337–350

    Google Scholar 

  20. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19:292–305

    Google Scholar 

  21. Cu ST, Hutson J, Schuller KA (2005) Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant Soil 272:143–151

    CAS  Google Scholar 

  22. Curl E, Truelove B (1986) The rhizosphere. Advanced series in agriculture sciences. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  23. D’Angioli AM, Viani RAG, Lambers H, Sawaya ACHF, Oliveira RS (2017) Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply. Plant Soil 410:499–507

    Google Scholar 

  24. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In food security in nutrient-stressed environments: exploiting plants’ genetic capabilities (pp. 201-213). Springer, Dordrecht

    Google Scholar 

  25. Darch T, Giles CD, Blackwell MS, George TS, Brown LK, Menezes-Blackburn D, Shand CA, Stutter MI, Lumsdon DG, Mezeli MM (2018) Inter-and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. Plant Soil 427:125–138

    PubMed  CAS  Google Scholar 

  26. Dechassa N, Schenk MK (2004) Exudation of organic anions by roots of cabbage, carrot, and potato as influenced by environmental factors and plant age. J Plant Nutr Soil Sci 167:623–629

    Google Scholar 

  27. Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J 7:391–400

    PubMed  CAS  Google Scholar 

  28. Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.). II. Aluminium-stimulated excretion of malic acid from roots. Plant Physiol 103:695–702

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Del-Saz NF, Romero-Munar A, Cawthray GR, Aroca R, Baraza E, Flexas J, Lambers H, Ribas-Carbó M (2017) Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation. Plant Soil 416(1–2):97–106

    CAS  Google Scholar 

  30. Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2006) Modified micro suction cup/rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution. Plant Soil 286:99–107

    Google Scholar 

  32. Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292

    CAS  Google Scholar 

  33. Drever J, Stillings L (1997) The role of organic acids in mineral weathering. Colloids Surf A Physicochem Eng Asp 120:167–181

    CAS  Google Scholar 

  34. Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    CAS  Google Scholar 

  35. Duputel M, Van Hoye F, Toucet J, Gérard F (2013) Citrate adsorption can decrease soluble phosphate concentration in soil: experimental and modeling evidence. Appl Geochem 39:85–92

    CAS  Google Scholar 

  36. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    CAS  Google Scholar 

  37. Fang Z, Shao C, Meng Y, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    CAS  Google Scholar 

  38. FAO (2009) The state of food and agriculture. www.fao.org. Accessed 7 Feb 2019

  39. Faucon M-P, Houben D, Reynoird J-P, Mercadal-Dulaurent A-M, Armand R, Lambers H (2015) Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus aanagement. Adv Agron 134:51–133

    Google Scholar 

  40. Fernando DR, Woodrow IE, Bakkaus EJ, Collins RN, Baker AJM, Batianoff GN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152

    CAS  Google Scholar 

  41. Fixen PE, Johnston AM (2012) World fertilizer nutrient reserves: a view to the future. J Sci Food Agric 92:1001–1005

    PubMed  CAS  Google Scholar 

  42. Gahoonia TS, Asmar F, Giese H, Gissel-Nielsen G, Nielsen NE (2000) Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. Eur J Agron 12:281–289

    CAS  Google Scholar 

  43. Gardner WK, Boundy KA (1983) The acquisition of phosphorus by Lupinus albus L. IV The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species . Plant Soil: 391–402

  44. Gardner WK, Barber DA, Parbery DG (1982) The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil 68:19–32

    CAS  Google Scholar 

  45. Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    CAS  Google Scholar 

  46. George TS, Richardson AE, Hadobas PA, Simpson RJ (2004) Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27:1351–1361

    CAS  Google Scholar 

  47. Grierson PF (1992) Organic acids in the rhizosphere of Banksia integrifolia Lf. Plant Soil 144:259–265

    CAS  Google Scholar 

  48. Hale MG, Foy CL, Shay FJ (1971) Factors affecting root exudation. In: Brady NC (ed) Adv Agron. Academic Press, Waltham-San Diego-London-Kidlington

    Google Scholar 

  49. Hammond JP, Broadley MR, Bowen HC, Spracklen WP, Hayden RM, White PJ (2011) Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS One 6:e24606

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    PubMed  CAS  Google Scholar 

  51. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248: 43–59

    CAS  Google Scholar 

  52. Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource-soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P starvation. Plant Soil 113:155–160

    CAS  Google Scholar 

  54. Huang G, Hayes PE, Ryan MH, Pang J, Lambers H (2017) Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability. Oecologia 185:387–400

    PubMed  Google Scholar 

  55. Jasinski SM (2011) Phosphate rock. US Geological Survey mineral commodity summaries 2011: 118–119

  56. Jemo M, Abaidoo RC, Nolte C, Tchienkoua M, Sanginga N, Horst WJ (2006) Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon. Plant Soil 284:385–397

    CAS  Google Scholar 

  57. Johnson JF, Allan DL, Vance CP, Weiblen G (1996a) Root carbon dioxide fixation by phosphorus deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol 112:19–30

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Johnson JF, Vance CP, Allan DL (1996b) Phosphorus deficiency in Lupinus albus (altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). Plant Physiol 112:31–41

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron. Elsevier. Academic Press, Waltham-San Diego-London-Kidlington

    Google Scholar 

  60. Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant Soil 205:25–44

    CAS  Google Scholar 

  61. Jones D, Brassington D (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci 49:447–455

    CAS  Google Scholar 

  62. Jones DL, Darrah PR (1994) Role of root derived organic-acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    CAS  Google Scholar 

  63. Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173:103–109

    CAS  Google Scholar 

  64. Jones DL, Prabowo AM, Kochian LV (1996) Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations: the effect of microorganisms on root exudation of malate under Al stress. Plant Soil 182:239–247

    CAS  Google Scholar 

  65. Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    CAS  Google Scholar 

  66. Kamh M, Horst WJ, Amer F, Mostafa H, Maier P (1999) Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211:19–27

    CAS  Google Scholar 

  67. Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11:121

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Kidd DR, Ryan MH, Hahne D, Haling RE, Lambers H, Sandral GA, Simpson RJ, Cawthray GR (2018) The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate. Plant Soil 424:389–403

    CAS  Google Scholar 

  69. Kirk G, Santos E, Santos M (1999) Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytol 142:185–200

    CAS  Google Scholar 

  70. Krishnapriya V, Pandey R (2016) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67:1096–1109

    CAS  Google Scholar 

  71. Kristoffersen AØ, Riley H, Sogn T (2005) Effects of P fertilizer placement and temperature on root hair formation, shoot growth and P content of barley grown on soils with varying P status. Nutr Cycl Agroecosyst 73:147–159

    Google Scholar 

  72. Kuijken RP, Snel JH, Heddes M, Bouwmeester H, Marcelis LM (2015) The importance of a sterile rhizosphere when phenotyping for root exudation. Plant Soil 387:131–142

    CAS  Google Scholar 

  73. Lambers H (1987) Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In: LJ Gregory PJ, Rose DA (ed) Root development and function effects of the physical environment. Cambridge University Press, Cambridge

  74. Lambers H, Plaxton WC (2015) Phosphorus: back to the roots. Annual Plant Reviews 48:3–22

    Google Scholar 

  75. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    PubMed  PubMed Central  Google Scholar 

  76. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    PubMed  Google Scholar 

  77. Lambers H, Bishop JG, Hopper SD, Laliberte E, Zuniga-Feest A (2012) Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann Bot 110:329–348

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Lambers H, Ahmedi I, Berkowitz O, Dunne C, Finnegan PM, Hardy GESJ, Jost R, Laliberté E, Pearse SJ, Teste FP (2013) Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. Conserv Physiol 1: cot010

    PubMed  PubMed Central  Google Scholar 

  79. Lambers H, Clode P, Hawkins H, Laliberté E, Oliveira R, Reddell P, Shane M, Stitt M, Weston P (2015a) Metabolic adaptations of the non-mycotrophic Proteaceae to soil with a low phosphorus availability. Phosphorus metabolism in plants in the post-genomic era: from gene to ecosystem. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  80. Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL (2015b) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci 20:83–90

    PubMed  CAS  Google Scholar 

  81. Lambers H, Albornoz F, Kotula L, Laliberté E, Ranathunge K, Teste FP, Zemunik G (2018) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424:11–34

    CAS  Google Scholar 

  82. Li CJ, Dong Y, Li HG, Shen JB, Zhang FS (2016) Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted. Sci Rep 6:18663

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141:674–684

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Ligaba A, Shen H, Shibata K, Yamamoto Y, Tanakamaru S, Matsumoto H (2004) The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus). Physiol Plant 120:575–584

    PubMed  CAS  Google Scholar 

  85. Lin WY, Lin SI, Chiou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60:1427–1438

    PubMed  CAS  Google Scholar 

  86. Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Liu P, Cai Z, Chen Z, Mo X, Ding X, Liang C, Liu G, Tian J (2018) A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis. Plant Cell Environ 41:2821–2834. https://doi.org/10.1111/pce.13412

    Article  PubMed  CAS  Google Scholar 

  88. Lopez-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, Lopez-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    PubMed  CAS  Google Scholar 

  89. López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13

    PubMed  Google Scholar 

  90. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    PubMed  PubMed Central  Google Scholar 

  91. Lu W, Zhang F, Cao Y (2001) Mobilization of soil phosphorus by low-molecular-weight organic acids. In: Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research (eds W.J. Horst, M.K. Schenk, A. Bürkert, N. Claassen, H. Flessa, W.B. Frommer, H. Goldbach, H.W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. v. Wirén, & L. Wittenmayer), pp. 554–555. Springer Netherlands, Dordrecht

  92. Lu J, Gao XR, Dong ZM, Yi J, An LJ (2012) Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum. Plant Cell Rep 31:49–56

    PubMed  Google Scholar 

  93. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  94. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Lynch JP, Ho MD, Phosphorus L (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    CAS  Google Scholar 

  96. Lyu Y, Tang H, Li H, Zhang F, Rengel Z, Whalley WR, Shen J (2016) Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Front Plant Sci 7:01939

    Google Scholar 

  97. Marschner H. (1988) Mechanisms of manganese acquisition by roots from soils. In: Manganese in soils and plants: Proceedings of the International Symposium on ‘Manganese in Soils and Plants’ held at the Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, South Australia, August 22–26, 1988 as an Australian Bicentennial Event (eds R.D. Graham, R.J. Hannam & N.C. Uren), pp. 191–204. Springer Netherlands, Dordrecht

  98. Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167–174

    CAS  Google Scholar 

  99. McBride RG, Mikkelsen RL, Barker KR (2000) The role of low molecular weight organic acids from decomposing rye in inhibiting root-knot nematode populations in soil. Appl Soil Ecol 15:243–251

    Google Scholar 

  100. Miransari M (2014) Plant growth promoting rhizobacteria. J Plant Nutr 37:2227–2235

    CAS  Google Scholar 

  101. Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 102:11934–11939

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Muler AL, Oliveira RS, Lambers H, Veneklaas EJ (2014) Does cluster-root activity benefit nutrient uptake and growth of co-existing species? Oecologia 174:23–31

    PubMed  Google Scholar 

  103. Nazeri NK, Lambers H, Tibbett M, Ryan MH (2014) Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant Cell Environ 37:911–921

    PubMed  CAS  Google Scholar 

  104. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    CAS  Google Scholar 

  105. Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, Second Edition. CRC Press. Boca Raton, Florida

    Google Scholar 

  106. Neumann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere—the plant science toolbox. Plant Soil 321:431–456

    CAS  Google Scholar 

  107. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Google Scholar 

  108. Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    PubMed  CAS  Google Scholar 

  109. Nilsson L, Müller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139:129–143

    PubMed  CAS  Google Scholar 

  110. Nuruzzaman M, Lambers H, Bolland MD, Veneklaas EJ (2005a) Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 271:175–187

    CAS  Google Scholar 

  111. Nuruzzaman M, Lambers H, Bolland MD, Veneklaas EJ (2005b) Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliser. Aust J Agric Res 56:1041–1047

    CAS  Google Scholar 

  112. Oburger E, Jones DL (2018) Sampling root exudates–mission impossible? Rhizosphere 6:116–133

    Google Scholar 

  113. Oburger E, Leitner D, Jones DL, Zygalakis KC, Schnepf A, Roose T (2011a) Adsorption and desorption dynamics of citric acid anions in soil. Eur J Soil Sci 62:733–742

    CAS  Google Scholar 

  114. Oburger E, Jones DL, Wenzel WW (2011b) Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 341:363–382

    CAS  Google Scholar 

  115. Oburger E, Dell’mour M, Hann S, Wieshammer G, Puschenreiter M, Wenzel WW (2013) Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environ Exp Bot 87:235–247

    Google Scholar 

  116. Ohwaki Y, Hirata H (1992) Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. Soil Sci Plant Nutr 38:235–243

    CAS  Google Scholar 

  117. Oono Y, Kawahara Y, Kanamori H, Mizuno H, Yamagata H, Yamamoto M, Hosokawa S, Ikawa H, Akahane I, Zhu Z (2011) mRNA-Seq reveals a comprehensive transcriptome profile of rice under phosphate stress. Rice 4:50–65

    Google Scholar 

  118. Oono Y, Kobayashi F, Kawahara Y, Yazawa T, Handa H, Itoh T, Matsumoto T (2013) Characterisation of the wheat (triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in pi-stressed wheat. BMC Genomics 14:1–14

    Google Scholar 

  119. O'Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    PubMed  CAS  Google Scholar 

  120. Otani T, Ae N, Tanaka H (1996) Phosphorus (P) uptake mechanisms of crops grown in soils with low P status: II. Significance of organic acids in root exudates of pigeonpea. Soil Sci Plant Nutr 42:553–560

    CAS  Google Scholar 

  121. Pandey R, Krishnapriya V, Kishora N, Singh SB, Singh B (2013) Shoot labelling with 14CO2: a technique for assessing total root carbon exudation under phosphorus stress. Indian J Plant Physiol 18:250–262

    Google Scholar 

  122. Pandey R, Meena SK, Krishnapriya V, Ahmad A, Kishora N (2014) Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram. Plant Cell Rep 33:919–928

    PubMed  CAS  Google Scholar 

  123. Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KH, Bolland MD, Denton MD, Lambers H (2010) Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 331:241–255

    CAS  Google Scholar 

  124. Pang J, Yang J, Lambers H, Tibbett M, Siddique KH, Ryan MH (2015) Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiol Plant 154:511–525

    PubMed  CAS  Google Scholar 

  125. Pang J, Bansal R, Zhao H, Bohuon E, Lambers H, Ryan MH, Ranathunge K, Siddique KH (2018) The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol 219:518–529

    CAS  Google Scholar 

  126. Panigrahy M, Rao DN, Sarla N (2009) Molecular mechanisms in response to phosphate starvation in rice. Biotechnol Adv 27:389–397

    PubMed  CAS  Google Scholar 

  127. Pant HK, Warman PR (2000) Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol Fertil Soils 30:306–311

    CAS  Google Scholar 

  128. Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MD, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190

    CAS  Google Scholar 

  129. Peret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses: in search of phosphate. Plant Physiol 166:1713–1723

    PubMed  PubMed Central  Google Scholar 

  130. Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    PubMed  CAS  Google Scholar 

  132. Ratnayake M, Leonard RT, Menge JA (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytol 81:543–552

    CAS  Google Scholar 

  133. Raven JA, Lambers H, Smith SE, Westoby M (2018) Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytol 217:1420–1427

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906

    Google Scholar 

  135. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    CAS  Google Scholar 

  137. Römer W, Schilling G (1986) Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 91:221–229

    Google Scholar 

  138. Rose TJ, Damon P, Rengel Z (2011) Phosphorus-efficient faba bean (Vicia faba L.) genotypes enhance subsequent wheat crop growth in an acid and an alkaline soil. Crop Pasture Sci 61:1009–1016

    Google Scholar 

  139. Ross MH, Ely JO, Archer JG (1951) Alkaline phosphatase activity and pH optima. J Biol Chem 192(2):561–568

    PubMed  CAS  Google Scholar 

  140. Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    PubMed  CAS  Google Scholar 

  141. Ryan MH, Tibbett M, Edmonds-Tibbett T, Suriyagoda LD, Lambers H, Cawthray GR, Pang J (2012) Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ 35:2170–2180

    PubMed  CAS  Google Scholar 

  142. Ryan PR, James RA, Weligama C, Delhaize E, Rattey A, Lewis DC, Bovill WD, McDonald G, Rathjen TM, Wang E, Fettell NA, Richardson AE (2014) Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat. Physiol Plant 151:230–242

    PubMed  CAS  Google Scholar 

  143. Šarapatka B, Dudová L, Kršková M (2004) Effect of pH and phosphate supply on acid phosphatase activity in cereal roots. Biologia, Bratislava 59:127–131

    Google Scholar 

  144. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell: tpc 112(096925)

  145. Sawers RJ, Svane SF, Quan C, Gronlund M, Wozniak B, Gebreselassie MN, Gonzalez-Munoz E, Chavez Montes RA, Baxter I, Goudet J, Jakobsen I, Paszkowski U (2017) Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol 214:632–643

    PubMed  CAS  Google Scholar 

  146. Schwab SM, Menge JA, Leonard RT (1983) Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation. Plant Physiol 73:761–765

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Shane MW, Lambers H (2005) Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plant 124:441–450

    CAS  Google Scholar 

  148. Shane M, De Vos M, de Roock S, Cawthray G, Lambers H (2003) Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata R. Br. Plant Soil 248:209–219

    CAS  Google Scholar 

  149. Shane M, Lambers H, Cawthray G, Kuhn A, Schurr U (2008) Impact of phosphorus mineral source (Al–P or Fe–P) and pH on cluster-root formation and carboxylate exudation in Lupinus albus L. Plant Soil 304:169–178

    CAS  Google Scholar 

  150. Shen H, Yan X, Zhao M, Zheng S, Wang X (2002) Exudation of organic acids in common bean as related to mobilization of aluminum-and iron-bound phosphates. Environ Exp Bot 48:1–9

    CAS  Google Scholar 

  151. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic press, Cambridge, Massachusetts

    Google Scholar 

  152. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Smith SE, Anderson IC, Smith FA (2015) Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. Ann Plant Rev 48:409–440

    CAS  Google Scholar 

  155. Staunton S, Leprince F (1996) Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bioavailability. Eur J Soil Sci 47:231–239

    CAS  Google Scholar 

  156. Ström L, Owen A, Godbold D, Jones D (2001) Organic acid behaviour in a calcareous soil: sorption reactions and biodegradation rates. Soil Biol Biochem 33:2125–2133

    Google Scholar 

  157. Toan DQ, Li Z, Thu TTA, Wang D, Liang D (2017) Role of organic acids on the bioavailability of selenium in soil: a review. Chemosphere 184:618–635

    Google Scholar 

  158. Tomasi N, De Nobili M, Gottardi S, Zanin L, Mimmo T, Varanini Z, Römheld V, Pinton R, Cesco S (2013) Physiological and molecular characterization of Fe acquisition by tomato plants from natural Fe complexes. Biol Fertil Soils 49:187–200

    CAS  Google Scholar 

  159. Tran HT, Hurley BA, Plaxton WC (2010) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27

    CAS  Google Scholar 

  160. Tsado PA (2016) Phosphate mobilization by addition of organic acids in two soils of the Southern Guinea Savanna of Nigeria. PhD Thesis

  161. Valentinuzzi F, Cesco S, Tomasi N, Mimmo T (2015) Influence of different trap solutions on the determination of root exudates in Lupinus albus L. Biol Fertil Soils 51:757–765

    CAS  Google Scholar 

  162. van Hees PA, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol Biochem 34:1261–1272

    Google Scholar 

  163. Van Hees P, Vinogradoff S, Edwards A, Godbold D, Jones D (2003) Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates. Soil Biol Biochem 35:1015–1026

    Google Scholar 

  164. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  165. Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    CAS  Google Scholar 

  166. Vengavasi K, Pandey R (2018) Root exudation potential in contrasting soybean genotypes in response to low soil phosphorus availability is determined by photo-biochemical processes. Plant Physiol Biochem 124:1–9

    PubMed  CAS  Google Scholar 

  167. Vengavasi K, Pandey R, Abraham G, Yadav RK (2017) Comparative analysis of soybean root proteome reveals molecular basis of differential carboxylate efflux under low phosphorus stress. Genes 8:341

    PubMed Central  Google Scholar 

  168. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  169. Violante A, Caporale AG (2015) Biogeochemical processes at soil-root interface. J Soil Sci Plant Nutr 15:422–448

    CAS  Google Scholar 

  170. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Wang Y, Xu H, Kou J, Shi L, Zhang C, Xu F (2013) Dual effects of transgenic Brassica napus overexpressing CS gene on tolerances to aluminum toxicity and phosphorus deficiency. Plant Soil 362:231–246

    CAS  Google Scholar 

  172. Wang YL, Almvik M, Clarke N, Eich-Greatorex S, Ogaard AF, Krogstad T, Lambers H, Clarke JL (2015) Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB Plants 7: plv097

    PubMed  PubMed Central  Google Scholar 

  173. Wang Y, Krogstad T, Liu Clarke J, Hallama M, Øgaard A, Eich-Greatorex S, Kandeler E, Clarke N (2016) Rhizosphere organic anions play a minor role in improving crop species’ ability to take up residual phosphorus (P) in agricultural soils low in P availability. Front Plant Sci 7:01664

    Google Scholar 

  174. Wang Y, Krogstad T, Clarke N, Øgaard AF, Clarke JL (2017) Impact of phosphorus on rhizosphere organic anions of wheat at different growth stages under field conditions. AoB Plants 9: plx008

  175. Wang Y, Lysøe E, Armarego-Marriott T, Erban A, Paruch L, van Eerde A, Bock R, Liu-Clarke J (2018) Transcriptome and metabolome analysis provide insights into root and root released organic anion responses to phosphorus deficiency in oat. J Exp Bot 69:3759–3771

    PubMed  CAS  Google Scholar 

  176. Wasaki J, Rothe A, Kania A, Neumann G, Römheld V, Shinano T, Osaki M, Kandeler E (2005) Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. J Environ Qual 34:2157–2166

    PubMed  CAS  Google Scholar 

  177. Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Wei L, Chen C, Xu Z (2010) Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils. Biol Fertil Soils 46:765–769

    CAS  Google Scholar 

  179. Weisskopf L, Fromin N, Tomasi N, Aragno M, Martinoia E (2005) Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure. Plant Soil 268:181–194

    CAS  Google Scholar 

  180. Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927

    PubMed  CAS  Google Scholar 

  181. Whipps JM (1990) Carbon economy. In: JM Lynch (ed) The rhizosphere: 59-97

  182. Williamson LC, Ribrioux SP, Fitter AH, Leyser HO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    PubMed  PubMed Central  CAS  Google Scholar 

  183. Withers P, Edwards A, Foy R (2001) Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manag 17:139–149

    Google Scholar 

  184. Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16:205–212

    PubMed  CAS  Google Scholar 

  185. Yan Y, Koopal LK, Liu F, Huang Q, Feng X (2015) Desorption of myo-inositol hexakisphosphate and phosphate from goethite by different reagents. J Plant Nutr Soil Sci 178:878–887

    CAS  Google Scholar 

  186. Yang XJ, Finnegan PM (2010) Regulation of phosphate starvation responses in higher plants. Ann Bot 105:513–526

    PubMed  PubMed Central  CAS  Google Scholar 

  187. Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:13468

    Google Scholar 

  188. Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56:192–220

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Zhao K, Wu Y (2014) Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species. Soil Sci Plant Nutr 60:640–650

    CAS  Google Scholar 

  190. Zhu Y, Yan F, Zörb C, Schubert S (2005) A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? Plant Cell Physiol 46:892–901

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Wenli Ding (University of Hohenheim) for an internal review of our manuscript, and three anonymous reviewers for their constructive comments and valuable suggestions on an earlier version of the manuscript. Y.W acknowledges the support from Department of Viruses, Bacteria and Nematodes, Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanliang Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: John Hammond.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lambers, H. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil 447, 135–156 (2020). https://doi.org/10.1007/s11104-019-03972-8

Download citation

Keywords

  • Carboxylates
  • Leaf Mn concentration
  • Plant nutrition
  • P availability
  • P acquisition
  • Root exudation
  • Soil P mobilization