Skip to main content
Log in

Soil trace metal content does not affect the distribution of the hyperaccumulator Noccaea caerulescens in the Vosges Mountains (France)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Noccaea caerulescens is a pseudo-metallophyte known to hyperaccumulate Zn, Cd and Ni, and a model species for the study of the hyperaccumulation of trace metals. However, information about its ecology is rather scarce. The aim of this work was thus to determine if soil metal content was the main factor responsible for the distribution of N. caerulescens.

Methods

During 4 years, the Vosges Mountains (north eastern France) were explored during the flowering season. Plants and their rooting soil were analyzed for their trace element content (Cd, Mn, Ni and Zn). The ecological amplitude of N. caerulescens was analyzed using Maximum Entropy Modelling (MaxEnt).

Results

Only five populations of the 67 recorded were found on metalliferous soils. All the recorded populations presented a Zn-hyperaccumulator phenotype, whereas only two presented a Cd and/or Ni-hyperaccumulator phenotype. The spatial distribution of mineralized areas did not explain the spatial distribution of the species. The MaxEnt distribution model suggested that the principle explanatory factors were the annual precipitation, soil use and underlying geology.

Conclusion

Trace metal concentrations in soils are not the main drivers of N. caerulescens distribution in the Vosges Mountains. Instead, pedological and climatic factors along with recent human activity are the main factors of the colonization of the massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antonovics J, Bradshaw AD, Turner R (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  • Assunção AGL, Bookum WM, Nelissen HJM et al (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419. https://doi.org/10.1046/j.1469-8137.2003.00819.x

    Article  CAS  Google Scholar 

  • Assunção AGL, Bleeker P, ten Bookum WM et al (2008) Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303:289–299. https://doi.org/10.1007/s11104-007-9508-x

    Article  CAS  Google Scholar 

  • Baker AJM (1994) Thlaspi caerulescens. In: Stewart A, Pearman DA, Preston CD (eds) Scarce plants in Britain, pp 407–409

    Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Banásová V, Horak O, Čiamporová M et al (2006) The vegetation of metalliferous and non-metalliferous grasslands in two former mine regions in Central Slovakia. Biologia (Bratisl) 61. https://doi.org/10.2478/s11756-006-0073-1

  • Basic N, Salamin N, Keller C et al (2006) Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochem Syst Ecol 34:667–677. https://doi.org/10.1016/j.bse.2006.04.001

    Article  CAS  Google Scholar 

  • Berher DE (1887) La flore des Vosges. Phanérogames, muscinées, lichens..

  • Boudot J-P, Bruckert S, Souchier B (1981) Végétation et sols climax Sur les grauwackes de la série du Markstein (Hautes-Vosges). Ann Sci For 38:87–106

    Article  Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • BRGM (1998) Cartographie des concentrations et des fonds géochimiques métalliques connus du massif des Vosges

  • BRGM (2008) Carte géologique interactive de la France à 1/1 000 000 (6ème édition révisée)

  • Chardot V, Echevarria G, Gury M et al (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7–21. https://doi.org/10.1007/s11104-007-9261-1

    Article  CAS  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99. https://doi.org/10.1016/j.tplants.2012.08.003

    Article  PubMed  CAS  Google Scholar 

  • Dechamps C, Elvinger N, Meerts P et al (2011) Life history traits of the pseudometallophyte Thlaspi caerulescens in natural populations from northern Europe. Plant Biol 13:125–135. https://doi.org/10.1111/j.1438-8677.2010.00387.x

    Article  PubMed  Google Scholar 

  • Denayer-De Smet S, Duvigneaud P (1974) Accumulation de métaux lourds toxiques dans divers écosystèmes terrestres pollués par des retombées d’origine industrielle. Bull Société R Bot Belg Van K Belg Bot Ver:147–156

  • Deng T-H-B, Cloquet C, Tang Y-T et al (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933

    Article  PubMed  CAS  Google Scholar 

  • Dubois S (2005) Etude d’un réseau de populations métallicoles et non-métallicoles de Thlaspi caerulescens (Brassicaceae): Structure génétique, démographie et pressions de sélection. PhD Thesis, Montpellier 2

  • Duchaufour PH, Souchier B (1978) Roles of iron and clay in genesis of acid soils under a humid, temperate climate. Geoderma 20:15–26

    Article  CAS  Google Scholar 

  • Dvořáková M (1968) Zur Nomenklatur einiger Taxa aus dem Formenkreis von Thlaspi alpestre (L.) L. Folia Geobot Phytotaxon 3:341–343

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Escarré J, Lefèbvre C, Gruber W et al (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Article  Google Scholar 

  • European Environment Agency (2007) CLC2006 technical guidelines. Publications Office, Luxembourg

    Google Scholar 

  • Flageollet J-C (2008) Morpho-structures vosgiennes. Géomorphologie Relief Process Environ 2:75–86

    Article  Google Scholar 

  • Fluck P, Ancel B (1989) Le paysage minier des sites métalliques des Vosges et de la Forêt-noire. Ann Bretagne Pays Ouest 96:183–201

    Article  Google Scholar 

  • Godron D (1883) Flore de Lorraine. 2ème éd, N. Grosjean Libraire éditeur. Tome premier

  • Goepp S (2007) Origine, histoire et dynamique des Hautes-Chaumes du massif vosgien. Déterminismes environnementaux et actions de l’Homme. PhD Thesis, Université Louis Pasteur

  • Gonneau C, Genevois N, Frérot H et al (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287. https://doi.org/10.1007/s11104-014-2208-4

    Article  CAS  Google Scholar 

  • Gonneau C, Noret N, Godé C et al (2017) Demographic history of the trace metal hyperaccumulator Noccaea caerulescens (J. Presl and C. Presl) F. K. Mey. In Western Europe. Mol Ecol 26:904–922. https://doi.org/10.1111/mec.13942

    Article  PubMed  Google Scholar 

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259. https://doi.org/10.1016/j.pbi.2011.04.003

    Article  PubMed  CAS  Google Scholar 

  • Hijmans RJ, Guarino L, Mathur P (2012) DIVA-GIS version 7.5 manual

  • Hohl J-L (1994) Minéraux et mines du massif vosgien. Editions du Rhin

    Google Scholar 

  • Ingrouille MJ, Smirnoff N (1986) Thlaspi caerulescens J. & C. Presl. (T. alpestre L.) in Britain. New phytol 219–233

  • ISO 10390 (2005) Soil quality - Determination of pH

  • ISO 23470 (1999) Soil quality - Chemical methods - Determination of cationic exchange capacity (CEC) and extractible cations

  • Julve P (2015) Baseveg. Répertoire synonymique des groupements végétaux de France. Version : 16 février 2015. http://perso.wanadoo.fr/philippe.julve/catminat.htm

  • Kazakou E, Dimitrakopoulos PG, Baker AJM et al (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    PubMed  CAS  Google Scholar 

  • Koch MA, German DA (2013) Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00267

  • Koopmans GF, Römkens PFAM, Fokkema MJ et al (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914. https://doi.org/10.1016/j.envpol.2008.05.029

    Article  PubMed  CAS  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141. https://doi.org/10.1016/j.copbio.2005.02.006

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Thomas DH (1995) Heavy metal hyperaccumulation by Thlaspi caerulescens J. & C. Presl. PhD Thesis, University of Sheffield

  • Marand C, Zumstein J-F (1990) La modélisation des précipitations moyennes annuelles appliquée au Massif vosgien. Hydrol Cont 5:29–39

    Google Scholar 

  • Maxted AP, Black CR, West HM et al (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372. https://doi.org/10.1016/j.envpol.2007.01.021

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW et al (2006) Field evaluation of cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125. https://doi.org/10.1016/j.envpol.2005.08.022

    Article  PubMed  CAS  Google Scholar 

  • Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231

    Article  Google Scholar 

  • Méloux J, Bureau de recherches géologiques et minières (France). Service géologique national, Commission géotechnique suisse (1982) Carte des gîtes minéraux de la France à 1/500 000 Strasbourg

  • Meyer FK (2006) Kritische revision der Thlaspi-Arten Europas, Afrikas und Vorderasiens. Spezieller Teil. IX, Noccaea

    Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13. https://doi.org/10.1093/aob/mcn063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molitor M, Dechamps C, Gruber W, Meerts P (2005) Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. New Phytol 165:503–512. https://doi.org/10.1111/j.1469-8137.2004.01240.x

    Article  PubMed  Google Scholar 

  • Mougeot J (1845) Considérations générales Sur la végétation spontanée (phanérogames et cryptogames) du département des Vosges. Stat Dép Vosges 1:163–516

    Google Scholar 

  • Parent GH (1997) Atlas des Ptéridophytes des régions lorraines et vosgiennes, avec les territoires adjacents. Musée National d’Histoire Naturelle, Luxembourg

    Google Scholar 

  • Parent GH (2011) La flore calcicole et basophile du massif vosgien. Musée National d’Histoire Naturelle, Luxembourg

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  • Peer WA, Mahmoudian M, Freeman JL et al (2006) Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol 172:248–260. https://doi.org/10.1111/j.1469-8137.2006.01820.x

    Article  PubMed  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Reeves R, Brooks R (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environ Pollut Ser Ecol Biol 31:277–285

    Article  CAS  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172. https://doi.org/10.1080/15226510108500054

    Article  CAS  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Schwartz D, Thinon M, Goepp S et al (2005) Premières datations directes de défrichements protohistoriques Sur les chaumes secondaires des Vosges (Rossberg, haut-Rhin). Approche pédoanthracologique. Comptes Rendus Geosci 337:1250–1256. https://doi.org/10.1016/j.crte.2005.06.004

    Article  Google Scholar 

  • Sterckeman T, Cazes Y, Gonneau C, Sirguey C (2017) Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 418:523–540. https://doi.org/10.1007/s11104-017-3311-0

    Article  CAS  Google Scholar 

  • Théobald N, Thiébaut J, Bernatzky M, Bureau de recherches géologiques et minières. Service géologique national (1974) Carte géologique de la France à 1/50 000. 411, Giromagny [Notice explicative]

  • van der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. https://doi.org/10.1007/s11104-012-1287-3

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. https://doi.org/10.1111/j.1469-8137.2008.02748.x

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hanikenne M, Clemens S (2013) A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00388

  • Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ Exp Bot 77:156–164. https://doi.org/10.1016/j.envexpbot.2011.11.016

    Article  CAS  Google Scholar 

  • Visioli G, Gullì M, Marmiroli N (2014) Noccaea caerulescens populations adapted to grow in metalliferous and non-metalliferous soils: Ni tolerance, accumulation and expression analysis of genes involved in metal homeostasis. Environ Exp Bot 105:10–17. https://doi.org/10.1016/j.envexpbot.2014.04.001

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Bañuelos GS, Lin Z-Q et al (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00136

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jean-Louis Morel and to Alan J. M. Baker for carefully pre-reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sirguey.

Additional information

Responsible Editor: Juan Barcelo.

Electronic supplementary material

ESM 1

(XLSX 12641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirguey, C., Seznec, G., Mahevas, T. et al. Soil trace metal content does not affect the distribution of the hyperaccumulator Noccaea caerulescens in the Vosges Mountains (France). Plant Soil 430, 245–262 (2018). https://doi.org/10.1007/s11104-018-3731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3731-5

Keywords

Navigation