Skip to main content
Log in

Thiosulfate amendment reduces mercury accumulation in rice (Oryza sativa L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Thiosulfate addition increases the solubility of mercury (Hg) in soil and Hg uptake by plants under oxic conditions. However, anoxic conditions could dominate the biogeochemical processes of Hg cycling during rice cultivation. The present study aimed to determine whether thiosulfate, a sulfur-containing fertilizer, could be used for Hg immobilization in paddy soil.

Methods

A pot experiment was conducted using soil newly spiked with Hg and different doses of thiosulfate. Total Hg concentrations in rice tissues, Hg speciation in roots, and geochemical fraction of Hg in soils were investigated. Hydroponic cultivation was conducted to determine the subcellular distribution of Hg in root tissues.

Results

Thiosulfate application significantly reduced Hg concentration in rice plants. It increased the percentage of organic-bound Hg, but decreased the percentage of iron/manganese oxide-bound Hg. Thiosulfate enhanced iron plaque formation and Hg adsorption on the iron plaque. Its application increased the percentage of Hg forms similar to HgS and decreased those similar to Hg-glutathione [Hg(GS)2].

Conclusions

Thiosulfate amendments had a remarkable inhibitory effect on Hg accumulation in rice plants in newly Hg-spiked soil. This occurred because thiosulfate reduced Hg mobility in the rhizosphere and root tissues, promoted the formation of iron plaque, and facilitated more Hg adsorption by the iron plaque. Our findings suggest that appropriate thiosulfate treatment could be used as Hg-immobilizing agents in paddy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benoit JM, Gilmour CC, Mason RP (2001) The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environ Sci Technol 35:127–132

    Article  PubMed  CAS  Google Scholar 

  • Bo BJ, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57:847–856

    Google Scholar 

  • Carrasco-Gil S, Siebner H, LeDuc DL, Webb SM, Millan R, Andrews JC, Hernandez LE (2013) Mercury location and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol 47:3082–3090

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z (2008) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environ Sci Technol 42:326–332

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Yu Z, Cai K, Shen H (2010) Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects: a review. J Plant Nutri Fertil 16:1527–1534

    CAS  Google Scholar 

  • Gomezeyles JL, Yupanqui C, Beckingham B, Riedel G, Gilmour C, Ghosh U (2013) Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Environ Sci Technol 47:13721–13729

    Article  CAS  Google Scholar 

  • Gunnam N, David ES (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72(1):18–25

    Article  CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  PubMed  CAS  Google Scholar 

  • Hofacker AF, Voegelin A, Kaegi R, Kretzschmar R (2013) Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles. Environ Sci Technol 47:7739–7746

    Article  PubMed  CAS  Google Scholar 

  • Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnoga I, Liya Q, Faganeli J (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci Total Environ 304:231–256

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Zhu Y, Li M, Zhang L, Gao Z, Andrew Smith F (2007) Sulfur (S)- induced enhancement of iron plaque in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393

    Article  PubMed  CAS  Google Scholar 

  • Jenny AJ, Francois MMM, Harold FH (2000) Mercury speciation in the presence of polysulfides. Environ Sci Technol 34:2196–2200

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  CAS  Google Scholar 

  • Kot FS, Rapoport VL, Kharitonova GV (2007) Immobilization of soil mercury by colloidal sulphur in the laboratory experiment. Cent Eur J Chem 5:846–857

    CAS  Google Scholar 

  • Larssen T (2010) In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Perspect 118:1183–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Zhao J, Li YF, Xu X, Zhang B, Liu Y, Cui L, Li B, Gao Y, Chai Z (2016a) Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 8:663–671

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhao J, Zhang B, Liu Y, Xu X, Li YF, Li B, Gao Y, Chai Z (2016b) The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant Soil 398:87–97

    Article  CAS  Google Scholar 

  • Li Y, Zhao J, Guo J, Liu M, Xu Q, Hong L, Li YF, Lei Z, Zhang Z, Gao Y (2017) Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere 182:293–300

    Article  PubMed  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol 162:481–488

    Article  CAS  Google Scholar 

  • Lomonte C, Doronila A, Gregory D, Baker AJM, Kolev SD (2011) Chelate-assisted phytoextraction of mercury in biosolids. Sci Total Environ 409:2685–2692

    Article  PubMed  CAS  Google Scholar 

  • Magos L, Macintosh DL, Williams PL, Hunter DJ (2002) Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347:1747–1754

    Article  Google Scholar 

  • Meng B, Feng X, Qiu G, Cai Y, Wang D, Li P, Shang L, Sommar J (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agr Food Chem 58:4951–4958

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G, Anderson CWN, Wang J, Zhao L (2014a) Localization and speciation of mercury in brown rice with implications for pan-Asian public health. Environ Sci Technol 48:7974–7981

    Article  PubMed  CAS  Google Scholar 

  • Meng M, Li B, Shao JJ, Wang T, He B, Shi JB, Ye ZH, Jiang GB (2014b) Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environ Pollut 184:179–186

    Article  PubMed  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Nomura R, Ghomshei M, Meech JA (2005a) Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-contaminated mine tailings. Plant Soil 275:233–246

    Article  CAS  Google Scholar 

  • Moreno FN, Stewart RB, Robinson BH, Ghomsher M, Meech JA (2005b) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol 166:445–454

    Article  PubMed  CAS  Google Scholar 

  • Qu D, Zhang YP, Schnell S (2003) Reduction of iron oxides and its effect on microbial processes in anaerobic paddy soil. Acta Pedol Sin 40:858–863

    CAS  Google Scholar 

  • Rothenberg SE, Windhammyers L, Creswell JE (2014) Rice methylmercury exposure and mitigation: acomprehensive review. Environ Res 133:407–423

    Article  PubMed  CAS  Google Scholar 

  • Scherer HW (2001) Sulfur in crop production-invited paprt. Eur J Agron 14:81–111

    Article  CAS  Google Scholar 

  • Shu R, Wang Y, Zhong H (2016) Biochar amendment reduced methylmercury accumulation in rice plants. J Hazard Mater 313:1–8

    Article  PubMed  CAS  Google Scholar 

  • Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res Biogeosci 113:285–295

    Article  CAS  Google Scholar 

  • Skyllberg U, Kang X, Bloom PR, Nater EA, Bleam WF (2000) Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects. J Environ Qual 29:855–865

    Article  CAS  Google Scholar 

  • Wang J, Feng X, Anderson CW, Qiu G, Ping L, Bao Z (2011) Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil-results from a greenhouse study. J Hazard Mater 186:119–127

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Feng X, Anderson CW, Wang H, Zheng L, Hu T (2012a) Implications of mercury speciation in thiosulfate treated plants. Environ Sci Technol 46:5361–5368

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012b) Remediation of mercury contaminated sites - a review. J Hazard Mater 221–222:1–18

    PubMed  Google Scholar 

  • Wang J, Feng X, Anderson CW, Wang H (2014) Thiosulphate-induced mercury accumulation by plants: metal uptake and transformation of mercury fractionation in soil - results from a fieldstudy. Plant Soil 375:21–33

    Article  CAS  Google Scholar 

  • Wang Y, Dang F, Evans RD, Zhong H, Zhao J, Zhou D (2016) Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil. Sci Rep 6:19477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Xia J, Feng X (2017) Screening of chelating ligands to enhance mercury accumulationfrom historically mercury-contaminated soils for phytoextraction. J Environ Manag 186:233–239

    Article  CAS  Google Scholar 

  • Wu F, Dong J, Qian Q, Zhang G (2005) Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barlely genotypes. Chemosphere 60:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Zagorchev L, Seal C, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Feng X, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44:4499–4504

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Li Y, Li Y, Gao Y, Li B, Hu Y, Zhao Y, Chai Z (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics 6:1951–1957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (U1432241, 21377129, and 21777162) and the National Student’s Innovative Entrepreneurial Training Program of China (201710389032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo Wang or Yuxi Gao.

Additional information

Responsible Editor: Juan Barcelo

Electronic supplementary material

ESM 1

(DOCX 33.2 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, H., Yu, Y. et al. Thiosulfate amendment reduces mercury accumulation in rice (Oryza sativa L.). Plant Soil 430, 413–422 (2018). https://doi.org/10.1007/s11104-018-3726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3726-2

Keywords

Navigation