Skip to main content

Advertisement

Log in

Halophytic plant community patterns in Mediterranean saltmarshes: shedding light on the connection between abiotic factors and the distribution of halophytes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Establishing a vegetation-soil model in Mediterranean saltmarshes based on the relationships between the plant communities and the abiotic factors, considering temporary variation.

Methods

Relationships between perennial plant species abundances and plant communities were analysed by DCAs. A CCA was performed to study the relationships between floristic composition and edaphic variables. Sixteen soil variables and Pearson correlations between them were considered. Marginal and conditional effects were supported by mixed ANOVA. Statistical analyses were performed to check temporary variation.

Results

DCAs results showed eight vegetation types. CCA showed E.C. as the main gradient, with the succulent halophyte communities growing in high E.C. soils. SAR and percentage of sand were considered as secondary gradients. Finally, the highest values of the edaphic variables were observed, in general, during the cold period.

Conclusions

The main gradient of salinity, together with sodicity and texture gradients, would markedly influence the plant distribution in Mediterranean saltmarshes. Two principal plant zones were observed: succulent zone vs. non-succulent zone, with a specific edaphic distribution for each plant community and for the proposed Limonium morphotypes treatment. A plant-soil model based on these three gradients is here proposed. Our results would complement the previous knowledge about plant-soil relationships in Mediterranean saltmarshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CCA:

Canonical Correspondence Analysis

DCA:

Detrended Correspondence Analysis

E.C.:

Electrical conductivity

PAWC:

Plant Available Water Capacity

SAR:

Sodium Adsorption Ratio

References

  • Abdul-Halim MS, Ismail AAM (1990) Vegetation composition of a maritime salt marsh in Qatar in relation to edaphic features. J Veg Sci 1:85–88. https://doi.org/10.2307/3236057

    Article  Google Scholar 

  • Adams DA (1963) Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44(3):445–456. https://doi.org/10.2307/1932523

    Article  Google Scholar 

  • Alcaraz F, Ortiz R, Hernández S (1987) Contribución al conocimiento de las relaciones suelo-agua-vegetación en un sector de las salinas de Santa Pola (Alicante). Anales de Edafología y Agrobiología 46:273–283

    CAS  Google Scholar 

  • Alonso MA (2000) Estudio geobotánico de los saladares del sureste peninsular (Albacete-Alicante-Almería y Murcia). Ph.D. thesis. University of Alicante, Spain

  • Álvarez-Rogel J (1997) Relaciones suelo-planta en saladares del sureste de España. Ph.D. thesis. University of Murcia, Spain

  • Álvarez-Rogel J, Alcaraz F, Ortiz R (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20(2):357–372. https://doi.org/10.1672/0277-5212(2000)020[0357:SSAMGA]2.0.CO;2

  • Álvarez-Rogel J, Ortiz R, Alcaraz F (2001) Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 99:81–98. https://doi.org/10.1016/S0016-7061(00)00067-7

    Article  Google Scholar 

  • Álvarez-Rogel J, Jiménez-Cárceles FJ, Roca MJ, Ortiz R (2007) Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci 73:510–526. https://doi.org/10.1016/j.ecss.2007.02.018

    Article  Google Scholar 

  • Baumberger T, Affre L, Croze T, Mesléard F (2012) Habitat requirements and population structure of the rare endangered Limonium girardianum in Mediterranean salt marshes. Flora 207:283–293. https://doi.org/10.1016/j.flora.2011.11.008

    Article  Google Scholar 

  • Bernstein L (1975) Effects of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295–312

    Article  Google Scholar 

  • Bertness MD, Ellison AM (1987) Determinants of pattern in a New England salt marsh plant community. Ecol Monogr 52(2):129–147. https://doi.org/10.2307/1942621

    Article  Google Scholar 

  • Bertness MD, Wikler K, Chatkupt T (1992) Flood tolerance and the distribution of Iva frutescens across New England salt marshes. Oecologia 91:171–178. https://doi.org/10.1007/BF00317780

    Article  PubMed  Google Scholar 

  • Blanca G, Cabezudo B, Cueto M, Salazar C, Morales-Torres C (eds) (2011) Flora Vascular de Andalucía Oriental. 2ª edición corregida y aumentada. Universidades de Almería, Granada, Jaén y Málaga, Granada.

  • Braun-Blanquet J (1946) Über den Deckungswert der Arten in den Pfl anzengesellschaften der Ordnung Vaccinio-Piceetalia. Jahresber Naturforsch Ges Graubündens 130:115–119

    Google Scholar 

  • Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de las comunidades vegetales. Blume, Madrid

    Google Scholar 

  • Burt R (2004) Soil survey laboratory methods manual. United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS), Lincoln

    Google Scholar 

  • Cantero JJ, Cisneros JM, Zobel M, Cantero A (1998) Environmental relationships of vegetation patterns in salt marshes of Central Argentina. Folia Geobot 33:133–145. https://doi.org/10.1007/BF02913341

    Article  Google Scholar 

  • Castroviejo S (coord gen) (1986–2015) Flora iberica 1–16(I), 17–18, 20–21. Real Jardín Botánico, CSIC, Madrid

  • Chapman VJ (1939) Studies in salt-marsh ecology. Sections IV and V. J Ecol 27:160–201. https://doi.org/10.2307/2256306

    Article  CAS  Google Scholar 

  • Chapman VJ (1974) Salt marshes and salt desert of the world. 2nd edition. Lehre, Stuttgart

  • Chigani KH, Khajeddin SJ, Karimzadeh HR (2010) Soil-vegetation relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degrad Dev 23(1):92–101. https://doi.org/10.1002/ldr.1057

    Article  Google Scholar 

  • Costa M, Boira H (1981) La vegetación valenciana: los saladares. Anales Jard Bot Madrid 38(l):233–244

    Google Scholar 

  • Davis MM, Sprecher SW, Wakeley JS, Best GR (1996) Environmental gradients and identification of wetlands in north–Central Florida. Wetlands 16:512–523. https://doi.org/10.1007/BF03161341

    Article  Google Scholar 

  • Deckers JA, Nachtergaele FO, Spaargaren OC (eds) (1998) World reference base for soil resources. Introduction. ISSS/ISRIC/FAO, Acco, Leuven/Amersfoort

    Google Scholar 

  • El-Amier YA (2016) Vegetation structure and soil characteristics of five common geophytes in desert of Egypt. Egyptian J Basic Appl Sci 3(2):172–186. https://doi.org/10.1016/j.ejbas.2016.03.001

    Article  Google Scholar 

  • El-Ghani MA, Soliman A, El-Fattah RA (2014) Spatial distribution and soil characteristics of the vegetation associated with common succulent plants in Egypt. Turk J Bot 38(3):550–565

    Article  Google Scholar 

  • Engels JG, Jensen K (2010) Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos 119(4):679–685. https://doi.org/10.1111/j.1600-0706.2009.17940.x

    Article  Google Scholar 

  • Engels JG, Rink F, Jensen K (2011) Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment. J Ecol 99(1):277–287. https://doi.org/10.1111/j.1365-2745.2010.01745.x

    Article  Google Scholar 

  • Erben M (1993) Limonium Mill. In: Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Muñoz Garmendia F, Navarro C, Paiva J, Soriano C (eds) Flora iberica 3. Real Jardín Botánico, CSIC, Madrid, pp 2–142

    Google Scholar 

  • FAO-UNESCO-ISRIC (1988) Soil map of the world, revised legend. World soil resources n°. FAO, Rome, p 60

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

    Article  PubMed  CAS  Google Scholar 

  • García LV, Marañón T, Moreno A, Clemente L (1993) Above-ground biomass and species richness in a Mediterranean salt marsh. J Veg Sci 4:417–424. https://doi.org/10.2307/3235601

    Article  Google Scholar 

  • González-Alcaraz MN, Jiménez-Cárceles FJ, Álvarez Y, Álvarez-Rogel J (2014) Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. Catena 115:150–158. https://doi.org/10.1016/j.catena.2013.11.011

    Article  CAS  Google Scholar 

  • Gray AJ (1994) Saltmarsh plant ecology: zonation and succession revisited. In: Allen JRL, Pye K (eds) Saltmarshes: Morphodynamics, conservation and engineering significance. Cambridge University Press, New York, pp 63–79

    Google Scholar 

  • Hackney CT, Brady S, Stemmy L, Boris M, Dennis C, Hancock T, O’Bryon M, Tylton C, Barbeew E (1996) Does intertidal vegetation indicate specific soil and hydrological conditions? Wetlands 16:89–94. https://doi.org/10.1007/BF03160649

    Article  Google Scholar 

  • Harris DC (2003) Quantitative chemical analysis, 6th edn. W.H. Freeman, New York

    Google Scholar 

  • Juárez M, Sánchez A, Jordá J, Sánchez J (2004) Diagnóstico del potencial nutritivo del suelo. Universidad de Alicante, Alicante

    Google Scholar 

  • Kassas M, Zahran MA (1967) On the ecology of the Red Sea littoral salt marsh, Egypt. Ecol Monogr 37:297–315

    Article  Google Scholar 

  • Koull N, Chehma A (2016) Soil characteristics and plant distribution in saline wetlands of Oued Righ, northeastern Algeria. J Arid Land 8(6):948–959. https://doi.org/10.1007/s40333-016-0060-5

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lendínez ML (2010) Estudio fitosociológico y fitocenótico de la vegetación halófila andaluza: Bases para su gestión y conservación. Ph.D. thesis. University of Jaén, Spain

  • Lepš J, Šmilauer P (2014) Multivariate analysis of ecological data using CANOCO 5, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Mateo G, Crespo MB (2009) Manual para la determinación de la flora valenciana, 4th edn. Librería Compás, Alicante

    Google Scholar 

  • Montasir AH (1943) Soil structure in relation to plants at Mariut. Bull Inst d’Egypte 15:205–236

    Google Scholar 

  • Moreno J, Terrones A, Alonso MA, Juan A, Crespo MB (2016) Limonium tobarrense (Plumbaginaceae), a new species from the southeastern Iberian Peninsula. Phytotaxa 257(1):61–70. https://doi.org/10.11646/phytotaxa.257.1.4

    Article  Google Scholar 

  • Moreno J, Terrones A, Juan A, Alonso MA (2017) A quantitative plant-soil model of saltcedar woodlands: the influence of abiotic factors on the floristic composition of Tamarix communities. Catena in press

  • Moreno J, Terrones A, Alonso MA, Juan A, Crespo MB (2018) Taxonomic revision of the Limonium latebracteatum group (Plumbaginaceae), with the description of a new species. Phytotaxa 333(1):41–57. https://doi.org/10.11646/phytotaxa.333.1.3

    Article  Google Scholar 

  • Muñoz-Rodríguez AF, Sanjosé I, Márquez-García B, Infante-Izquierdo MD, Polo-Ávila A, Nieva FJJ, Castillo JM (2017) Germination syndromes in response to salinity of Chenopodiaceae halophytes along the intertidal gradient. Aquat Bot 139:48–56. https://doi.org/10.1016/j.aquabot.2017.02.003

    Article  CAS  Google Scholar 

  • Munsell® (1994) Soil colour charts, Revised edition. Macbeth Division of Kollmorgen Instruments Corporation, New Windsor

    Google Scholar 

  • Neiring WA, Warren RS (1980) Vegetation patterns and processes in New England salt marshes. Bioscience 30(5):301–307. https://doi.org/10.2307/1307853

    Article  Google Scholar 

  • Ortiz R, Álvarez-Rogel J, Alcaraz F (1995) Soil-vegetation relationships in two coastal salt marshes in southeastern Spain. Arid Soil Res Rehabil 9(4):481–493. https://doi.org/10.1080/15324989509385914

    Article  Google Scholar 

  • Peinado M, Alcaraz F, Aguirre JL, Delgadillo J, Álvarez J (1995) Similarity of zonation within Californian-Baja Californian and Mediterranean salt marshes. Southwest Nat 40(4):388–405

    Google Scholar 

  • Pennings SC, Bertness MD (1999) Using latitudinal variation to examine effects of climate on coastal salt marsh pattern and process. Curr Top Wetland Biogeochem 3:100–111

    Google Scholar 

  • Pennings SC, Callaway RM (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73(2):681–690. https://doi.org/10.2307/1940774

    Article  Google Scholar 

  • Pennings SC, Grant M, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93(1):159–167. https://doi.org/10.1111/j.1365-2745.2004.00959.x

    Article  Google Scholar 

  • Pielou EC, Routledge RD (1976) Salt marsh vegetation: latitudinal gradients in the zonation patterns. Oecologia 24(4):311–321. https://doi.org/10.1007/BF00381137

    Article  PubMed  CAS  Google Scholar 

  • Piernik A (2003) Inland halophilous vegetation as indicator of soil salinity. Basic Appl Ecol 4:525–536. https://doi.org/10.1078/1439-1791-00154

    Article  Google Scholar 

  • Piernik A (2012) Ecological patterns of inland salt marsh vegetation in Central Europe. Nicolas Copernicus University Press, Toruń

    Google Scholar 

  • Pignatti S (1952) Note fitosociologique su alcune associazioni alofile del litorale tunisino. Bol Soc Veneziana Stor Nat 6(1):77–94

    Google Scholar 

  • Piirainen M, Liebisch O, Kadereit G (2017) Phylogeny, biogeography, systematics and taxonomy of Salicornioideae (Amaranthaceae / Chenopodiaceae) – a cosmopolitan, highly specialized hygrohalophyte lineage dating back to the Oligocene. Taxon 66(1):109–132. https://doi.org/10.12705/661.6

    Article  Google Scholar 

  • Pujol JA, Calvo JF, Ramírez-Díaz L (2000) Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Ann Bot 85:279–286. https://doi.org/10.1006/anbo.1999.1028

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Redondo S, Rubio-Casal AE, Castillo JM, Luque CJ, Álvarez AA, Luque T, Figueroa ME (2004) Influences of salinity and light on germination of three Sarcocornia taxa with contrasted habitats. Aquat Bot 78:255–264. https://doi.org/10.1016/j.aquabot.2003.11.002

    Article  Google Scholar 

  • Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España. Memoria del mapa de vegetación potencial de España, Parte I. Itinera Geobot 17:5–436

    Google Scholar 

  • Sari-Ali A, Benabadji N, Bouazza M (2012) Floristic composition of the halophilic and salt-resistant plant population in Hammam-Boughrara (Oran-Algeria). Open J Ecol 2:96–108. https://doi.org/10.4236/oje.2012.22012

    Article  Google Scholar 

  • Snow AA, Vince SW (1984) Plant zonation in an Alaskan salt marsh: II. An experimental study of the role of edaphic conditions. J Ecol 72:669–684. https://doi.org/10.2307/2260075

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Using multivariate statistics, 5th edn. Pearson, Boston

    Google Scholar 

  • Tadros TM (1953) A phytosociological study of halophilous communities from Mareotis (Egypt). Plant Ecol 4(2):102–124. https://doi.org/10.1007/BF00822833

    Article  Google Scholar 

  • Teege P, Kadereit JW, Kadereit G (2011) Tetraploid European Salicornia species are best interpreted as ecotypes of multiple origin. Flora 206:910–920. https://doi.org/10.1016/j.flora.2011.05.009

    Article  Google Scholar 

  • ter Braak, C.J., Šmilauer, F.P. (1999) CANOCO for Windows v. 4.02. Centre for Biometry Wageningen CPRO-DLO, Wageningen, The Netherlands

  • Vicente MJ, Conesa E, Álvarez-Rogel J, Franco JA, Martínez-Sánchez JJ (2007) Effects of various salts on the germination of three perennial salt marsh species. Aquat Bot 87(2):167–170. https://doi.org/10.1016/j.aquabot.2007.04.004

    Article  CAS  Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, New York

    Google Scholar 

  • Wolff WJ (1968) The halophilous vegetation of the lagoons of Mesolonghi, Greece. Vegetatio 16(1–4):95–134. https://doi.org/10.1007/BF00261359

    Article  Google Scholar 

  • Zedler JB, Callaway JC, Desmond JS, Vivian-Smith G, Williams GD, Sullivan G, Brewster AE, Bradshaw BK (1999) Californian salt marsh vegetation: an improved model of spatial pattern. Ecosystems 2:19–35. https://doi.org/10.1007/s100219900055

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Francesco de Bello and Prof. Petr Šmilauer for the assistance and suggestions in the statistical analyses; Antonio Sánchez and Margarita Juárez for the assistance in the edaphic analyses; Alicia Vicente, José Luis Villar, Jonás Agulló, Manuel Ortiz and Laura Mora for the assistance in fieldwork; and the University of South Bohemia (Czech Republic) for providing CANOCO v.5 (Microcomputer Power, Ithaca, NY, US) to perform the statistical analyses. We greatly appreciate the comments of two anonymous reviewers. This research was supported by project OAPN 354/2011 (M° de Agricultura, Alimentación y Medio Ambiente, Spanish Government) and FPU grant AP-2012-1954 (M° de Educación, Spanish Government). This research has been supported by the Languages Service (University of Alicante) for the elaboration of Ph.D. Theses in Valencian and foreign languages. This research is part of the Ph.D. Thesis of Joaquín Moreno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Moreno.

Additional information

Responsible Editor: Wieland Fricke.

Electronic supplementary material

ESM 1

(XLSX 13.2 kb)

ESM 2

(XLSX 13.5 kb)

ESM 3

(XLSX 28.3 kb)

ESM 4

(XLSX 62 kb)

ESM 5

(XLSX 16.3 kb)

ESM 6

(XLSX 13.7 kb)

ESM 7

(XLSX 12.7 kb)

ESM 8

(XLSX 16.7 kb)

ESM 9

(XLSX 15.1 kb)

Figure A1

Canonical Correspondence Analysis (CCA) with E.C. as covariable of forty-three samples of halophytic communities from studied Mediterranean saltmarshes showing correlations between samples and edaphic variables. Arrows indicate the edaphic variables and their directions and length show their relationships to the ordination axes. Edaphic variables abbreviations: E.C., electrical conductivity; Moisture, soil moisture; PAWC, plant available water capacity; SAR, sodium adsorption ratio. Plant community abbreviations: A. macrostachyum, Arthrocaulon macrostachyum; H. strobilaceum, Halocnemum strobilaceum; L. spartum, Lygeum spartum; S. fruticosa, Salicornia fruticosa. (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, J., Terrones, A., Juan, A. et al. Halophytic plant community patterns in Mediterranean saltmarshes: shedding light on the connection between abiotic factors and the distribution of halophytes. Plant Soil 430, 185–204 (2018). https://doi.org/10.1007/s11104-018-3671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3671-0

Keywords

Navigation