Skip to main content

Advertisement

Log in

Co-application of wood ash and Paenibacillus mucilaginosus to soil: the effect on maize nutritional status, root exudation and composition of soil solution

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Improvement in nutrient efficiency of recycled fertiliser products represents a crucial step for sustainable agriculture. In this context, ash from biomass combustion belongs to the materials of interest.

Methods

Novel strain of potential plant growth-promoting bacterium (Paenibacillus mucilaginosus ABi13) was tested for its ability to increase the plant availability of nutrients from wood ash (WA) in P-deficient soil-plant systems. Maize plants were grown in soil microcosms in semi-natural conditions, enabling rhizospheric- and bulk-soil solution analysis with special emphasis on low-molecular-mass organic acids (LMMOA).

Results

Wood ash, as a sole fertiliser, increased biomass yield and improved nutritional status of maize plants. Concomitantly, application of WA led to lower root exudation rates of malate and isocitrate likely due to improved P status of plants. P. mucilaginosus ABi13 was inefficient in mobilising P from plain, acidic soil, but increased P solubility in ash-amended soil. However, P. mucilaginosus ABi13 consequently decreased NO3 concentrations in soil solution and induced N deficiency in maize, which led to decreased biomass yield and LMMOA exudation rates.

Conclusions

This study demonstrated the importance of plant nutritional status on the final outcome of PGPR inoculation and contributes to our understanding of interactions between introduced PGPR, soil microbiome and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Argo WR, Weesies BJ, Bergman EM, Marshal M, Biernbaum JA (1997) Evaluating rhizon soil solution samplers as a method for extracting nutrient solution and analysing media for container-grown crops. Hort-Technology 7:404–408

    Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235:255–235:255. https://doi.org/10.1007/s11104-008-9805-z

    Article  CAS  Google Scholar 

  • Bashan Y, Kamnev AA, De-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479

  • Beaufils, E.R. 1973. Diagnosis and recommendation integrated system (DRIS). A general scheme of experimentation based on principles developed from research in plant nutrition. Soil Sci. Bull. 1. Univ. of Natal. Pietermaritzburg, South Africa

  • Bogino, P.C., Oliva, M.M., Sorroche, F.G. and, Giordano, W. 2013. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859. doi:https://doi.org/10.3390/ijms140815838

  • Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodepozition and microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere–Biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Brod E, Øgaard AF, Hansen E, Wragg D, Haraldsen TK, Krogstad T (2015) Waste products as alternative phosphorus fertilisers part I: inorganic P species affect fertilisation effects depending on soil pH. Nutr Cycl Agroecosyst 103:167–185. https://doi.org/10.1007/s10705-015-9734-1

    Article  CAS  Google Scholar 

  • Campbell CR, Plank CO (2000) Reference sufficiency ranges – corn. In: Campbell, C.R. (ed.) Reference sufficiency ranges for plant analysis in the southern region of the United States. Southern cooperative series bulletin 394. ISBN: 1-58161-394-6, pp. 11–14

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522

    Article  PubMed  Google Scholar 

  • Clark IM, Hirsch PR (2008) Survival of bacterial DNA and culturable bacteria in archived soils from the Rothamsted Broadbalk experiment. Soil Biol Biochem 40:1090–1102

    Article  CAS  Google Scholar 

  • Demeyer A, Nkana JCV, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295. https://doi.org/10.1016/S0960-8524(00)00043-2

    Article  PubMed  CAS  Google Scholar 

  • Di Bonito M, Breward N, Crout N, Smith B, Young S (2008) Overview of selected soil pore water extraction methods for the determination of potentially toxic elements in contaminated soils: operational and technical aspects. In: De Vivo B, Belkin HE, Lima A (eds) Environmental chemistry: site characterization, data analysis and case histories. Elsevier, London, pp 213–249

    Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OUT sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  PubMed  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189. https://doi.org/10.1016/j.apsoil.2007.02.005

    Article  Google Scholar 

  • Elwali AMO, Gascho GJ, Summer ME (1985) DRIS norms for 11 nutrients in corn leaves. Agron J 77:506–508

    Article  Google Scholar 

  • Erich MS (1991) Agronomic effectiveness of wood ash as a source of phosphorus and potassium. J Environ Qual 20:576–581. https://doi.org/10.2134/jeq1991.00472425002000030012x

    Article  CAS  Google Scholar 

  • Erich MS, Ohno T (1992) Phosphorus availability to corn from wood ash amended soils. Water Air Soil Pollut 64:475–485. https://doi.org/10.1007/BF00483357

    Article  CAS  Google Scholar 

  • FAO (2017) Wood energy. Rome, Italy

    Google Scholar 

  • Fitz W, Puschenreiter M, Wenzel WW (2006) Growth systems. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Birmensdorf, Swiss Federal Research Institute WSL, pp 9–15

    Google Scholar 

  • Fliessbach A, Winkler M, Lutz MP, Oberholzer HR, Mäder P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623. https://doi.org/10.1007/s00248-009-9489-9

    Article  PubMed  Google Scholar 

  • Gaume A, Mächler F, De León C, Narro L, Frossard E (2001) Low-P tolerance by maize (Zea mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant Soil 228:253–264

    Article  CAS  Google Scholar 

  • Giagnoni L, Pastorelli R, Mocali S, Arenella M, Nannipieri P, Renella G (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Appl Soil Ecol 98:30–38. https://doi.org/10.1016/j.apsoil.2015.09.004

    Article  Google Scholar 

  • Gillman GP (1979) A proposed method for the measurement of exchange properties of highly weathered soil. Aust J Soil Res 17:129–139. https://doi.org/10.1071/SR9790129

    Article  CAS  Google Scholar 

  • Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geoderma 69:147–156

    Article  Google Scholar 

  • Gunina A, Smith AR, Kuzyakov Y, Jones DL (2017) Microbial uptake and utilization of low molecular weight organic substrates in soil depend on carbon oxidation state. Biogeochemistry 133:89–100. https://doi.org/10.1007/s10533-017-0313-1

    Article  CAS  Google Scholar 

  • Han HS, Supanjani P, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. https://doi.org/10.1007/s11104-008-9885-9

    Article  CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microb Biot 22:983–990. https://doi.org/10.1007/s11274-006-9144-2

    Article  CAS  Google Scholar 

  • Insam H, Knap BA (2011) Recycling of biomass ashes. Springer-Verlag, Berlin. Germany

    Book  Google Scholar 

  • Jones JB, Eck HV, Voss R (1990) Plant analysis as an aid in fertilizing corn and grain sorghum. P. 521–547. In R.L. Westerman (ed.) Soil Testing and Plant Analysis. SSSA Special Publ. Series No. 3. Soil Sci. Soc., Amer., Madison, WI

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33. https://doi.org/10.1007/s11104-009-9925-0

    Article  CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krey T, Caus M, Baum C, Ruppel S, Eichler-Löbermann B (2011) Interactive effects of plant growth-promoting rhizobacteria and organic fertilization on P nutrition of Zea mays L. and Brassica napus L. J Plant Nutr Soil Sci 174:602–613. https://doi.org/10.1002/jpln.200900349

    Article  CAS  Google Scholar 

  • Krey T, Baum C, Ruppel S, Seydel M, Eichler-Löbermann B (2013) Organic and inorganic P sources interacting with applied rhizosphere bacteria and their effects on growth and P supply of maize. Commun Soil Sci Plan 44:3205–3215. https://doi.org/10.1080/00103624.2013.842248

    Article  CAS  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Wu Z, Li W, Yan R, Li L, Li J, Li Y, Li M (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125. https://doi.org/10.1007/s00253-006-0750-6

    Article  PubMed  CAS  Google Scholar 

  • Li X, Rubæk GH, Sørensen P (2016) High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes. Sci Total Environ 557-558:851–860

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, W.L. 1979. Chemical equilibria in soils. John Wiley & Sons, New York

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Hlth 28:133–140. https://doi.org/10.1007/s10653-005-9022-0

    Article  CAS  Google Scholar 

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumer ME (eds) Methods of soil analysis. Part 3: chemical methods. SSSA, Madison, pp 437–474

    Google Scholar 

  • Lu J, Xue A, Cao Z, Yang S, Hu X (2014) Diversity of plant growth-promoting Paenibacillus mucilaginosus isolated from vegetable fields in Zhejiang, China. Ann Microbiol 64:1745–1756. https://doi.org/10.1007/s13213-014-0818-y

    Article  CAS  Google Scholar 

  • Lyu Y, Tang H, Li H, Zhang F, Rengel Z, Whalley WR, Shen J (2016) Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Front Plant Sci 7:1939

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43:609–619. https://doi.org/10.1016/j.soilbio.2010.11.031

    Article  CAS  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 Extractant. Commun Soil Sci Plant Anal 15:1409–1416. https://doi.org/10.1080/00103628409367568

    Article  CAS  Google Scholar 

  • Mercl F, Tejnecký V, Száková J, Tlustoš P (2016) Nutrient dynamics in soil solution and wheat response after biomass ash amendments. Agron J 108:2222–2234. https://doi.org/10.2134/agronj2016.03.0176

    Article  CAS  Google Scholar 

  • Mercl F, Tejnecký V, Száková J, Hubová P, Tlustoš P (2017) Influence of Rhizon MOM suction cup and Triticum aestivum L. on the concentration of organic and inorganic anions in soil solution. J Soils Sediments 17:820–826. https://doi.org/10.1007/s11368-016-1574-3

    Article  CAS  Google Scholar 

  • Mimmo T, Ghizzi M, Marzadori C, Gessa CE (2008) Organic acid extraction from rhizosphere soil: effect of field-moist, dried and frozen samples. Plant Soil 312:175–184. https://doi.org/10.1007/s11104-008-9574-8

    Article  CAS  Google Scholar 

  • Mistrik I, Ullrich CI (1996) Mechanism of anion uptake in plant roots: quantitative evaluation of H+/NO3 and H+/H2PO4 stoichiometries. Plant Physiol Biochem 34:629–636

    CAS  Google Scholar 

  • Mosimann C, Oberhänsli T, Ziegler D, Nassal D, Kandeler E, Boller T, Mäder P, Thonar C (2017) Tracing of two pseudomonas strains in the root and rhizoplane of maize, as related to their plant growth-promoting effect in contrasting soils. Front Microbiol 7:2150. https://doi.org/10.3389/fmicb.2016.02150

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann G, Römheld V (2001) The release of root exudates as affected by plant physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere—biochemistry and organic substances at the soil-plant interface, 2nd edn. Marcel Decker, New York, pp 24–72

    Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Nkana JCV, Demeyer A, Verloo MG (1998) Availability of nutrients in wood ash amended tropical acid soils. Environ Technol 19:1213–1221. https://doi.org/10.1080/09593331908616781

    Article  Google Scholar 

  • Oburger E, Kirk GJD, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41:449–457

    Article  CAS  Google Scholar 

  • Oburger E, Jones DL, Wenzel WW (2011) Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 341:363–382. https://doi.org/10.1007/s11104-010-0650-5

    Article  CAS  Google Scholar 

  • Oburger E, Dell’mour M, Hann S, Wieshammer G, Puschenreiter M, Wenzel WW (2013) Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environ Exp Bot 87:235–247

    Article  Google Scholar 

  • Ochecová P, Tlustoš P, Száková J (2014) Wheat and soil response to wood fly ash application in contaminated soils. Agron J 106:995–1002. https://doi.org/10.2134/agronj13.0363

    Article  CAS  Google Scholar 

  • Ochecová P, Mercl F, Košnář Z, Tlustoš P (2017) Fertilization efficiency of wood ash pellets amended by gypsum and superphosphate in the ryegrass growth. Plant Soil Environ 63:47–54

    Article  Google Scholar 

  • Odlare M, Pell M (2009) Effect of wood fly ash and compost on nitrification and denitrification in agricultural soil. Appl Energ 86:74–80

    Article  CAS  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989. https://doi.org/10.1038/ismej.2014.196

    Article  PubMed  CAS  Google Scholar 

  • Park BB, Yanai RD, Sahm JM, Ballard BD, Abrahamson LP (2004) Wood ash effects on soil solution and nutrient budgets in a willow bioenergy plantation. Water Air Soil Pollut 159:209–224. https://doi.org/10.1023/B:WATE.0000049177.60761.37

    Article  CAS  Google Scholar 

  • Patterson SJ, Acharya SN, Thomas JE, Bertschi AB, Rothwell RL (2004) Barley biomass and grain yield and canola seed yield response to land application of wood ash. Agron J 96:971–977. https://doi.org/10.2134/agronj2004.0971

    Article  Google Scholar 

  • Peterson BW, Sharma PK, van der Mei HC, Busscher HJ (2012) Bacterial cell surface damage due to centrifugal compaction. Appl Environ Microbiol 78:120–125. https://doi.org/10.1128/AEM.06780-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puschenreiter M, Wenzel WW, Wieshammer G, Fitz WJ, Wieczorek S, Kanitsar K, Köllensperger G (2005) Novel micro-suction-cup design for sampling soil solution at defined distances from roots. J Plant Nutr Soil Sci 168:386–391. https://doi.org/10.1002/jpln.200421681

    Article  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  PubMed  CAS  Google Scholar 

  • Rais D, Nowack B, Schulin R, Luster J (2006) Sorption of trace metals by standard and micro suction cups in the absence and presence of dissolved organic carbon. J Environ Qual 35:50–60. https://doi.org/10.2134/jeq2005.0040

    Article  PubMed  CAS  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ e2584:4. https://doi.org/10.7717/peerj.2584

    Article  Google Scholar 

  • Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J (2008) Innovative methods for soil DNA purification tested in soils of widely differing characteristics. Appl Environ Microbiol 74:2902–2907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer D, Kuzyakov Y, Stahr K (2006) Spatial distribution of root exudate of five plant species as assessed by 14C labelling. J Plant Nutr Soil Sci 169:360–362. https://doi.org/10.1002/jpln.200621974

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulze J, Pöschel G (2004) Bacterial inoculation of maize affects carbon allocation to roots and carbon turnover in the rhizosphere. Plant Soil 267:235–241

    Article  CAS  Google Scholar 

  • Seneviratne G, Jayasinghearachchi HS (2005) A rhizobial biofilm with nitrogenase activity alters nutrient availability in a soil. Soil Biol Biochem 37:1975–1978

    Article  CAS  Google Scholar 

  • Shen J, Hoffland E (2007) In situ sampling of small volumes of soil solution using modified micro-suction cups. Plant Soil 292:161–169. https://doi.org/10.1007/s11104-007-9212-x

    Article  CAS  Google Scholar 

  • Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Sobeck DC, Higgins MJ (2002) Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res 36:527–538

    Article  PubMed  CAS  Google Scholar 

  • Strigul NS, Kravchenko LV (2006) Mathematical modeling of PGPR inoculation into the rhizosphere. Environ Model Softw 21:1158–1171. https://doi.org/10.1016/j.envsoft.2005.06.003

    Article  Google Scholar 

  • Száková J, Ochecová P, Hanzlíček T, Perná I, Tlustoš P (2013) Variability of total and mobile element contents in ash derived from biomass combustion. Chem Pap 67:1376–1385. https://doi.org/10.2478/s11696-013-0399-4

    Article  CAS  Google Scholar 

  • Tang J, Qi S, Li Z, An Q, Xie M, Yang B, Wang Y (2014) Production, purification and application of polysaccharide-basedbioflocculant by Paenibacillus mucilaginosus. Carbohyd Polym 113:463–470. https://doi.org/10.1016/j.carbpol.2014.07.045

    Article  CAS  Google Scholar 

  • Vassilev S, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40–76. https://doi.org/10.1016/j.fuel.2012.09.041

    Article  CAS  Google Scholar 

  • VDLUFA Methods (1991) Manual sampling and chemical investigations – determination of soil acidity and lime status – determination of pH. Vol 1(A):5.1.1

    Google Scholar 

  • Vos J (2005) Best practice guidelines part a: biomass combustion. University of Twente, Enschede 118 p

    Google Scholar 

  • Xiao B, Sun Y, Lian B, Chen T (2016) Complete genome sequence and comparative genome analysis of the Paenibacillus mucilaginosus K02. Microb Pathogenesis 93:194–203

    Article  CAS  Google Scholar 

  • Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and "All-species living tree project (LTP)" taxonomic frameworks. Nucleic Acids Res 42(Database issue):D643–D648. https://doi.org/10.1093/nar/gkt1209

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Tang C, Chen Z, Kuo J (1999) Extraction of apoplastic sap from plant roots by centrifugation. New Phytol 143:299–304

    Article  Google Scholar 

  • Yue JC, Clayton MK (2005) A similarity measure based on species proportions. Comm Statist Theory Methods 34:2123–2131. https://doi.org/10.1080/STA-200066418

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the BIOFECTOR project (Resource preservation by application of BIOefFECTORs in European crop production, grant agreement number 312117) under the 7th Framework Program (FP7), European Commission, Brussels, Belgium. We thank the editor and three anonymous reviewers for their comments and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mercl.

Additional information

Responsible Editor: Ellis Hoffland.

Electronic supplementary material

ESM 1

(DOCX 545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercl, F., Tejnecký, V., Ságová-Marečková, M. et al. Co-application of wood ash and Paenibacillus mucilaginosus to soil: the effect on maize nutritional status, root exudation and composition of soil solution. Plant Soil 428, 105–122 (2018). https://doi.org/10.1007/s11104-018-3664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3664-z

Keywords

Navigation