Root responses to domestication, precipitation and silicification: weeping meadow grass simplifies and alters toughness

Abstract

Background and aims

Plant breeding usually focuses on conspicuous above-ground plant traits, yet roots fundamentally underpin plant fitness. Roots show phenotypic plasticity in response to soil conditions but it is unclear whether domesticated plants respond like their ancestors. We aimed to determine how root traits differed between ancestral and domesticated types of a meadow grass (Microlaena stipoides) under altered regimes of precipitation and soil silicon availability.

Methods

We subjected the two grass types to three simulated precipitation regimes (ambient, +50%/deluge and −50%/drought) in soil with (Si+) and without (Si−) silicon supplementation and then characterised root biomass, architectural complexity and toughness in addition to shoot traits.

Results

Domestication increased root tissue density, decreased specific root length (SRL) and decreased root architectural complexity. Domestication also increased root strength under Si− conditions but not Si+ conditions. Fine roots, SRL, architectural complexity and the force required to tear the roots all decreased under deluge. The ancestral and domesticated grasses responded similarly to precipitation, except that the latter had weaker roots (decreased fracture strain) under drought.

Conclusions

Domestication and increased precipitation caused changes in M. stipoides root traits that could be beneficial against some stresses (e.g. soil compaction, herbivory) but not others (e.g. drought).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

RTD:

root tissue density

SRL:

specific root length

SRA:

specific root area

ANC:

ancestral

DOM:

domesticated

Si:

silicon

N:

nitrogen

C:

carbon

References

  1. Børja I, De Wit HA, Steffenrem A, Majdi H (2008) Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in Southeast Norway. Tree Physiol 28:773–784. https://doi.org/10.1093/treephys/28.5.773

    Article  PubMed  Google Scholar 

  2. Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196. https://doi.org/10.1023/a:1014905104017

    Article  CAS  Google Scholar 

  3. Casler MD, van Santen E (2010) Breeding objectives in forages. In: Boller B, Posselt UK, Veronesi F (eds) Handbook of plant breeding: fodder crops and amenity grasses, vol 5. Springer. New York, USA, pp 129–150

    Google Scholar 

  4. Chen YH, Bernal CC (2011) Arthropod diversity and community composition on wild and cultivated rice. Agric For Entomol 13:181–189. https://doi.org/10.1111/j.1461-9563.2010.00510.x

    Article  Google Scholar 

  5. Chen YH, Romena A (2008) Rice domestication decreases tolerance to the yellow stemborer, Scirpophaga incertulas. International Rice Research Notes 32:21–27

  6. Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58. https://doi.org/10.1146/annurev-ento-010814-020601

    Article  PubMed  CAS  Google Scholar 

  7. Chiew FHS, Young WJ, Cai W, Teng J (2011) Current drought and future hydroclimate projections in Southeast Australia and implications for water resources management. Stoch Env Res Risk A 25:601–612. https://doi.org/10.1007/s00477-010-0424-x

    Article  Google Scholar 

  8. Coleman DC (1976) A review of root production processes and their influence on biota in terrestrial ecosystems. In: Anderson JM, MacFadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford, UK, pp 417–434

    Google Scholar 

  9. Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442. https://doi.org/10.3389/fpls.2013.00442

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68. https://doi.org/10.1016/j.tplants.2010.10.003

    Article  PubMed  CAS  Google Scholar 

  11. de Vries FT, Brown C, Stevens CJ (2016) Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant Soil 409:297–312. https://doi.org/10.1007/s11104-016-2964-4

    Article  CAS  Google Scholar 

  12. Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:4.1–4.23

    Article  CAS  Google Scholar 

  13. Demarta L, Hibbard BE, Bohn MO, Hiltpold I (2014) The role of root architecture in foraging behavior of entomopathogenic nematodes. J Invertebr Pathol 122:32–39. https://doi.org/10.1016/j.jip.2014.08.002

    Article  PubMed  Google Scholar 

  14. Deshmukh R, Bélanger RR (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30:1277–1285. https://doi.org/10.1111/1365-2435.12570

    Article  Google Scholar 

  15. Ennos AR (1991) The mechanics of anchorage in wheat Triticum aestivum L.: I. THE ANCHORAGE OF WHEAT SEEDLINGS. J Exp Bot 42:1601–1606. https://doi.org/10.1093/jxb/42.12.1601

    Article  Google Scholar 

  16. Erb M, Robert CAM, Marti G, Lu J, Doyen G, Villard N, Barrière Y, French BW, Wolfender JL, Turlings T, Gershenzon J (2015) A physiological and behavioral mechanism for leaf herbivore-induced systemic root resistance. Plant Physiol 169:2884–2894. https://doi.org/10.1104/pp.15.00759

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  17. Evans LT (1996) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge, UK

    Google Scholar 

  18. Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978. https://doi.org/10.3389/fpls.2015.00978

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fleck AT, Schulze S, Hinrichs M, Specht A, Waßmann F, Schreiber L, Schenk MK (2015) Silicon promotes exodermal casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS One 10:e0138555. https://doi.org/10.1371/journal.pone.0138555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Frew A, Powell JR, Sallam N, Allsopp PG, Johnson SN (2016) Trade-offs between silicon and phenolic defenses may explain enhanced performance of root herbivores on phenolic-rich plants. J Chem Ecol 42:768–771. https://doi.org/10.1007/s10886-016-0734-7

    Article  PubMed  CAS  Google Scholar 

  21. Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290. https://doi.org/10.1111/j.1469-8137.2009.02884.x

    Article  PubMed  CAS  Google Scholar 

  22. Gregory PJ (2006) Plant roots: growth, activity and interaction with soils, 1st edn. Blackwell, Oxford

    Book  Google Scholar 

  23. Hales TC, Miniat CF (2017) Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability. Earth Surf Process Landf 42:803–813. https://doi.org/10.1002/esp.4039

    Article  Google Scholar 

  24. Hansen DJ, Dayanandan P, Kaufman PB, Brotherson JD (1976) Ecological adaptations of salt marsh grass, Distichlis spicata (Gramineae), and environmental factors affecting its growth and distribution. Am J Bot 63:635–650. https://doi.org/10.2307/2441826

    Article  Google Scholar 

  25. Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–325. https://doi.org/10.2307/2406971

    Article  PubMed  Google Scholar 

  26. Hartley SE, DeGabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30:1311–1322. https://doi.org/10.1111/1365-2435.12706

    Article  Google Scholar 

  27. Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749

    Article  PubMed  CAS  Google Scholar 

  28. Hillman G, Hedges R, Moore A, Colledge S, Pettitt P (2001) New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. The Holocene 11:383–393. https://doi.org/10.1191/095968301678302823

    Article  Google Scholar 

  29. Hiltpold I, Demarta L, Johnson SN, Moore BD, Power SA, Mitchell C (2016) Silicon and other essential element composition in roots using X-ray fluorescence spectroscopy: a high throughput approach. In: Johnson SN (ed) Invertebrate ecology of Australasian grasslands. Western Sydney University, Hawkesbury

    Google Scholar 

  30. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. https://doi.org/10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  31. Huyghe C, Brummer EC (2013) Forage and grasslands in a sustainable agriculture: new challenges for breeding. In: Sokolović D, Huyghe C, Radović J (eds) Quantitative traits breeding for multifunctional grasslands and turf. Springer, Netherlands, pp 3–16. https://doi.org/10.1007/978-94-017-9044-4_1

    Google Scholar 

  32. IPCC (2007) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  33. Johnson SN, Nielsen UN (2012) Foraging in the dark – chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614. https://doi.org/10.1007/s10886-012-0106-x

    Article  PubMed  CAS  Google Scholar 

  34. Johnson SN, Hallett PD, Gillespie TL, Halpin C (2010) Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol Entomol 35:186–191. https://doi.org/10.1111/j.1365-3032.2010.00723.x

    Article  CAS  Google Scholar 

  35. Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714. https://doi.org/10.1093/pcp/pcw052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lux A, Luxová M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441. https://doi.org/10.1046/j.1469-8137.2003.00764.x

    Article  CAS  Google Scholar 

  37. Malory S (2014) Accelerated domestication of Australian native grass species using molecular tools. Southern Cross University

  38. Malory S, Shapter FM, Elphinstone MS, Chivers IH, Henry RJ (2011) Characterizing homologues of crop domestication genes in poorly described wild relatives by high-throughput sequencing of whole genomes. Plant Biotechnol J 9:1131–1140. https://doi.org/10.1111/j.1467-7652.2011.00640.x

    Article  PubMed  CAS  Google Scholar 

  39. Mariotti Lippi M, Foggi B, Aranguren B, Ronchitelli A, Revedin A (2015) Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P. Proc Natl Acad Sci 112:12075–12080. https://doi.org/10.1073/pnas.1505213112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Marshall AH, Collins RP, Humphreys MW, Scullion J (2016) A new emphasis on root traits for perennial grass and legume varieties with environmental and ecological benefits. Food Energy Secur 5:26–39. https://doi.org/10.1002/fes3.78

    Article  PubMed  PubMed Central  Google Scholar 

  41. Massei G, Hartley SE (2000) Disarmed by domestication? Induced responses to browsing in wild and cultivated olive. Oecologia 122:225–231

    Article  PubMed  CAS  Google Scholar 

  42. Mazzacavallo MG, Kulmatiski A (2015) Modelling water uptake provides a new perspective on grass and tree coexistence. PLoS One 10:e0144300. https://doi.org/10.1371/journal.pone.0144300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mitchell M (2013) Ecology of Microlaena stipoides in grazing systems. Charles Sturt University

  44. Mitchell M, Stodart B, Virgona J (2014) Genetic diversity within a population of Microlaena stipoides, as revealed by AFLP markers. Aust J Bot 62:580–586

    Article  CAS  Google Scholar 

  45. Moore BD, Johnson SN (2016) Get tough, get toxic or get a bodyguard: identifying candidate traits conferring belowground resistance to herbivores in grasses. Front Plant Sci 7:1925

    PubMed  Google Scholar 

  46. Oksanen J et al (2017) Vegan: community ecology package. R package version 2.4–2

  47. Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442. https://doi.org/10.1080/11263500701626069

    Article  Google Scholar 

  48. Paez-Garcia A, Motes CM, Scheible W-R, Chen R, Blancaflor EB, Monteros MJ (2015) Root traits and phenotyping strategies for plant improvement. Plants 4:334–355

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. https://doi.org/10.1071/BT12225

    Article  Google Scholar 

  50. Pinheiro J, Bates D, DebRoy S, Sarkar D (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1–131 URL: http://cran.r-project.org/web/packages/nlme/index.html

  51. Piwowarczyk B, Tokarz K, Makowski W, Łukasiewicz A (2017) Different acclimatization mechanisms of two grass pea cultivars to osmotic stress in in vitro culture. Acta Physiol Plant 39:96. https://doi.org/10.1007/s11738-017-2389-6

    Article  CAS  Google Scholar 

  52. Power SA, Barnett KL, Ochoa-Hueso R, Facey SL, Gibson-Forty EVJ, Hartley SE, Nielsen UN, Tissue DT, Johnson SN (2016) Dri-grass: a new experimental platform for addressing grassland ecosystem responses to future precipitation scenarios in south-East Australia. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01373

  53. Qin X, Niklas KJ, Qi L, Xiong Y, Li F (2012) The effects of domestication on the scaling of below- vs. aboveground biomass in four selected wheat (Triticum; Poaceae) genotypes. Am J Bot 99:1112–1117

    Article  PubMed  Google Scholar 

  54. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  55. Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272. https://doi.org/10.1016/S1369-5266(03)00041-4

    Article  PubMed  CAS  Google Scholar 

  56. Rosenthal JP, Welter SC (1995) Tolerance to herbivory by a stemboring caterpillar in architecturally distinct maizes and wild relatives. Oecologia 102:146–155. https://doi.org/10.1007/BF00333245

    Article  PubMed  CAS  Google Scholar 

  57. Ryalls JM, Hartley SE, Johnson SN (2017) Impacts of silicon-based grass defences across trophic levels under both current and future atmospheric CO2 scenarios. Biol Lett 13:1–5. https://doi.org/10.1098/rsbl.2016.0912

    Article  CAS  Google Scholar 

  58. Salminen J-P, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338. https://doi.org/10.1111/j.1365-2435.2010.01826.x

    Article  Google Scholar 

  59. Shapter FM, Cross M, Ablett G, Malory S, Chivers IH, King GJ, Henry RJ (2013) High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PloS one 8:e82641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Simpson KJ, Wade RN, Rees M, Osborne CP, Hartley SE (2017) Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Funct Ecol 31:2108–2117. https://doi.org/10.1111/1365-2435.12935

    Article  Google Scholar 

  61. Smartt J, Simmonds NW (1995) Evolution of crop plants. Wiley, New York

    Google Scholar 

  62. Sokolović D, Huyghe C, Radović J (2014) Quantitative traits breeding for multifunctional grasslands and turf. Springer, Dordrecht

    Book  Google Scholar 

  63. Soukup M, Martinka M, Bosnić D, Čaplovičová M, Elbaum R, Lux A (2017) Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development Ann Bot https://doi.org/10.1093/aob/mcx060

  64. Striker GG, Insausti P, Grimoldi AA, León RJC (2006) Root strength and trampling tolerance in the grass Paspalum dilatatum and the dicot Lotus glaber in flooded soil. Funct Ecol 20:4–10. https://doi.org/10.1111/j.1365-2435.2006.01075.x

    Article  Google Scholar 

  65. Tron S, Bodner G, Laio F, Ridolfi L, Leitner D (2015) Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecol Model 312:200–210. https://doi.org/10.1016/j.ecolmodel.2015.05.028

    Article  CAS  Google Scholar 

  66. Turcotte MM, Turley NE, Johnson MT (2014) The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol 204:671–681. https://doi.org/10.1111/nph.12935

    Article  PubMed  Google Scholar 

  67. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663

    Article  PubMed  PubMed Central  Google Scholar 

  68. Whitehead SR, Turcotte MM, Poveda K (2017) Domestication impacts on plant-herbivore interactions: a meta-analysis. Philos Trans R Soc Lond Ser B Biol Sci 372:20160034. https://doi.org/10.1098/rstb.2016.0034

    Article  Google Scholar 

  69. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  70. Yang Y, Chen L, Li N, Zhang Q (2016) Effect of root moisture content and diameter on root tensile properties. PloS One 11:e0151791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Discovery Project grant from the Australian Research Council (ARC DP140100636) awarded to SNJ and BDM and an internship from the Hawkesbury Institute for the Environment awarded to MC. We would like to thank Dr. I. Chivers (Native Seeds Pty Ltd., Australia) for providing the seeds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James M. W. Ryalls.

Additional information

Responsible Editor: Peter J. Gregory.

Electronic supplementary material

ESM 1

(DOCX 536 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryalls, J.M.W., Moore, B.D., Johnson, S.N. et al. Root responses to domestication, precipitation and silicification: weeping meadow grass simplifies and alters toughness. Plant Soil 427, 291–304 (2018). https://doi.org/10.1007/s11104-018-3650-5

Download citation

Keywords

  • Deluge
  • Drought
  • Fracture strain
  • Root architectural complexity
  • Root trait selection
  • Tensile strength