Skip to main content
Log in

Molecular composition of the Humeome extracted from different green composts and their biostimulation on early growth of maize

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The use of composted agricultural wastes as source of biostimulant compounds provides an added value to the recycling of biomasses. This study aims to expand the knowledge on the relationship between molecular composition and bioactivity of the Humeome extracted from green composts.

Methods

Humic acids (HA) were isolated from the following green composts: 1. artichoke (HA-CYN), 2. artichoke/fennel (HA-CYNF), 3. tomato (HA-TOM), 4. cauliflower (HA-CAV). The compost-extracted Humeome was characterized by solid- and liquid-state Nuclear Magnetic Resonance (NMR) Spectroscopy, Infrared Spectrometry, pyrolysis-gas chromatography/mass spectrometry (Pyr-GC/MS), elemental and thermal analyses (TGA, DSC), and the effects on maize (Zea mays L.) seedling growth (roots and shoots) and leaves chlorophyll content, investigated at three different concentration rates (25, 50 and 100 mg L−1 C).

Results

All Humeomes from green composts generally favored plant growth, with HA-CYN and HA-CAV being active at small concentrations, while HA-TOM and HA-CYNF at greater application rates. The response of HA-CYN and HA-CAV was attributed to their large hydrophobicity that may favor adhesion to roots surfaces and concomitant release of bioactive molecules, whereas the toxicity of phenolic moieties in HA-TOM and HA-CYNF could only be mitigated by tighter intermolecular aggregation at greater concentrations.

Conclusion

Bioactivity of Humeomes from green composts appeared to be related to their composition and consequent conformational structure in solution, whose flexibility determines the potential release of bioactive molecules that directly or indirectly influence plants development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asli S, Neumann PM (2010) Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 336:313–322

    Article  CAS  Google Scholar 

  • Berbara RL, García AC (2014) Humic substances and plant defense metabolism, physiological mechanisms and adaptation strategies in plants under changing environment. In: Parvaiz A, Mohd RW (eds) Humic substances and plant defense metabolism. Springer, New York, pp 297–319

    Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Campitelli P, Ceppi S (2008) Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma 144:325–333

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chem Biol Technol 1:11

    Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Façanha AR (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78:457–466

    Article  PubMed  CAS  Google Scholar 

  • Canellas LP, Dobbss LB, Oliveira AL, Chagas JG, Aguiar NO, Rumjanek VM, Novotny EH, Olivares FL, Spaccini R, Piccolo A (2012) Chemical properties of humic matter as related to induction of plant lateral roots. Eur J Soil Sci 63:315–324

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27

    Article  CAS  Google Scholar 

  • Chai X, Takayuki S, Cao X, Guo Q, Zhao Y (2007) Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere 69:1446–1453

    Article  PubMed  CAS  Google Scholar 

  • Conselvan GB, Pizzeghello D, Francioso O, Di Foggia M, Nardi S, Carletti P (2017) Biostimulant activity of humic substances extracted from leonardites. Plant Soil 420:119–134

    Article  CAS  Google Scholar 

  • Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A (2016) The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol Fertil Soils 52:15–29

    Article  CAS  Google Scholar 

  • De Marco A, Spaccini R, Vittozzi P, Esposito F, Berg B, De Santo AV (2012) Decomposition of black locust and black pine leaf litter in two coeval forest stands on mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:1–15

    Article  CAS  Google Scholar 

  • Dobbss LB, Canellas LP, Olivares FL, Aguiar NO, Peres LEP, Azevedo M, Spaccini R, Piccolo A, Façanha AR (2010) Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J Agric Food Chem 58:3681–3688

    Article  PubMed  CAS  Google Scholar 

  • Drosos M, Nebbioso A, Mazzei P, Vinci G, Spaccini R, Piccolo A (2017) A molecular zoom into soil Humeome by a direct sequential chemical fractionation of soil. Sci Total Environ 586:807–816

    Article  PubMed  CAS  Google Scholar 

  • El Ouaqoudi FZ, El Fels L, Winterton P, Lemée L, Amblès A, Hafidi M (2014) Study of humic acids during composting of ligno-cellulose waste by infra-red spectroscopic and thermogravimetric/thermal differential analysis. Compost Sci Util 22:188–198

    Article  CAS  Google Scholar 

  • Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, Nardi S (2009) Biostimulant activity of two protein hydrolizates in the growth and nitrogen metabolism of maize seedlings. J Plant Nutr Soil Sci 172:237–244

    Article  CAS  Google Scholar 

  • Fernández JM, Plaza C, Polo A, Plante AF (2012) Use of thermal analysis techniques (TG–DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application. Waste Manag 32:158–164

    Article  PubMed  CAS  Google Scholar 

  • Garcia AC, Olaetxea M, Santos LA, Mora V, Baigorri R, Fuentes M, Zamarreño AM, Berbara RL, Garcia-Mina JM (2016) Involvement of hormone- and ROS signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Res Int 13 ID 3747501. https://doi.org/10.1155/2016/3747501

  • Grandmougin-Ferjani A, Schuler-Muller I, Hartmann MA (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol 113:163–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grube M, Lin JG, Lee PH, Kokorevicha S (2006) Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130:324–333

    Article  CAS  Google Scholar 

  • Hatcher PG, Nanny MA, Minard RD, Dible SD, Carson DM (1995) Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Org Geochem 23:881–888

    Article  CAS  Google Scholar 

  • Hatfield GR, Maciel GE, Erbatur O, Erbatur G (1987) Qualitative and quantitative analysis of solid lignin samples by carbon-13 nuclear magnetic resonance spectrometry. Anal Chem 59:172–179

    Article  CAS  Google Scholar 

  • Jindo K, Martim SA, Navarro EC, Pérez-Alfocea F, Hernandez T, Garcia C, Aguiar NO, Canellas LP (2012) Root growth promotion by humic acids from composted and non composted urban organic wastes. Plant Soil 353:209–220

    Article  CAS  Google Scholar 

  • Johnson CE, Smernik RJ, Siccama TG, Kiemle DK, Xu Z, Vogt DJ (2005) Using 13C nuclear magnetic resonance spectroscopy for the study of northern hardwood tissues. Can J For Res 35:1821–1831

    Article  CAS  Google Scholar 

  • Keeler C, Kelly EF, Maciel GE (2006) Chemical–structural information from solid-state 13 C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA. Geoderma 130:124–140

    Article  CAS  Google Scholar 

  • Kowaljow E, Mazzarino MJ (2007) Soil restoration in semiarid Patagonia: chemical and biological response to different compost quality. Soil Biol Biochem 39:1580–1588

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J Plant Physiol 131:101–110

    Article  CAS  Google Scholar 

  • Maia CMBF, Piccolo A, Mangrich AS (2008) Molecular size distribution of compost-derived humates as a function of concentration and different counterions. Chemosphere 73:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Malcolm RL (1990) The uniqueness of humic substances in each of soil, stream and marine environments. Anal Chim Acta 232:19–30

    Article  CAS  Google Scholar 

  • Monda H, Cozzolino V, Vinci G, Spaccini R, Piccolo A (2017) Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize. Sci Total Environ 590:40–49

    Article  PubMed  CAS  Google Scholar 

  • Mora V, Bacaicoa E, Zamarreño AM, Aguirre E, Garnica M, Fuentes M, García-Mina JM (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167:633–642

    Article  PubMed  CAS  Google Scholar 

  • Muscolo A, Sidari M (2006) Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant Soil 284:305–318

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Nardi S (2013) Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. J Geochem Explor 129:57–63

    Article  CAS  Google Scholar 

  • Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol Biochem 39:3138–3146

    Article  CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2011) Basis of a Humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules 12:1187–1199

    Article  PubMed  CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2012) Advances in Humeomic: enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Anal Chim Acta 720:77–90

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer J, Chen Y, Bollag JM (1992) Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci Soc Am J 56:135–140

    Article  CAS  Google Scholar 

  • Nuzzo A, Spaccini R, Cozzolino V, Moschetti G, Piccolo A (2017) In situ polymerization of soil 626 organic matter by oxidative biomimetic catalysis. Chem Biol Technol 4:12

    Article  CAS  Google Scholar 

  • Olaetxea M, Mora V, Bacaicoa E, Garnica M, Fuentes M, Casanova E, Zamarreño AM, Iriarte JC, Etayo D, Ederra I, Gonzalo R, Baigorri R, Gonzalo R, Garcia-Mina JM (2015) Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids. Plant Physiol 169:2587–2596

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olaetxea M, De Hita D, Garcia CA, Fuentes M, Baigorri R, Mora V, …, Berbara R L (2017) Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Appl Soil Ecol. in press. https://doi.org/10.1016/j.apsoil.2017.06.007

  • Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52:151–160

    Article  CAS  Google Scholar 

  • Pascual JA, Ayuso M, Garcia C, Hernández T (1997) Characterization of urban wastes according to fertility and phytotoxicity parameters. Waste Manag Res 15:103–112

    Article  CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134

    Article  CAS  Google Scholar 

  • Piccolo A (2016) In memoriam prof FJ Stevenson and the question of humic substances in soil. Chem Biol Technol 3:23

    Article  CAS  Google Scholar 

  • Piccolo A, Mbagwu JSC (1997) Exogenous humic substances as conditioners to the rehabilitation of degraded soils. Agro-Food Industry High Tech 8:2–4

    CAS  Google Scholar 

  • Piccolo A, Stevenson FJ (1982) Infrared spectra of Cu 2+ Pb 2+ and Ca 2+ complexes of soil humic substances. Geoderma 27:195–208

    Article  CAS  Google Scholar 

  • Piccolo A, Campanella L, Petronio BM (1990) 13C-NMR spectra of humic substances extracted with different mechanisms. Soil Sci Soc Am J 54:750–755

    Article  CAS  Google Scholar 

  • Piccolo A, Nardi S, Concheri G (1992) Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biol Biochem 24:373–380

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Spaccini R, Mbagwu JSC (2005) Influence of land use on the characteristics of humic substances in some tropical soils of Nigeria. Eur J Soil Sci 56:343–352

    Article  CAS  Google Scholar 

  • Pinton R, Cesco S, Santi S, Varanini Z (1997) Soil humic substances stimulate proton release by intact oat seedling roots. J Plant Nutr 20:857–869

    Article  CAS  Google Scholar 

  • Pinton R, Cesco S, Iacolettig G, Astolfi S, Varanini Z (1999) Modulation of NO3 uptake by water-extractable humic substances: involvement of root plasma membrane H+ ATPase. Plant Soil 215:155–161

    Article  CAS  Google Scholar 

  • Plante AF, Fernández JM, Leifeld J (2009) Application of thermal analysis techniques in soil science. Geoderma 153:1–10

    Article  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L). J Exp Bot 55:803–813

    Article  PubMed  CAS  Google Scholar 

  • Rose MT, Patti AF, Little KR, Brown AL (2014) A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron 124:37–89

    Article  CAS  Google Scholar 

  • Savy D, Nebbioso A, Mazzei P, Drosos M, Piccolo A (2015) Molecular composition of water-soluble lignins separated from different non-food biomasses. Fuel Process Technol 131:175–181

    Article  CAS  Google Scholar 

  • Savy D, Cozzolino V, Nebbioso A, Drosos M, Nuzzo A, Mazzei P, Piccolo A (2016) Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for energy. Plant Soil 402:221–233

    Article  CAS  Google Scholar 

  • Savy D, Mazzei P, Drosos M, Cozzolino V, Lama L, Piccolo A (2017) Molecular characterization of extracts from biorefinery wastes an evaluation of their plant biostimulation. ACS Sustain Chem Eng 5:9023–9031

    Article  CAS  Google Scholar 

  • Simpson AJ, McNally DJ, Simpson MJ (2011) NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectrosc 58:97–175

    Article  PubMed  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Kohli RK (2014) Ferulic acid impairs rhizogenesis and root growth, and alters associated biochemical changes in mung bean (Vigna radiata) hypocotyls. J Plant Interact 9:267–274

    Article  CAS  Google Scholar 

  • Šmejkalová D, Spaccini R, Piccolo A (2008) Multivariate analysis of CPMAS 13C-NMR spectra of soils and humic matter as a tool to evaluate organic carbon quality in natural systems. Eur J Soil Sci 59:496–504

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A (2009) Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biol Biochem 41:1164–1172

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A (2012) Carbon sequestration in soils by hydrophobic protection and in situ catalyzed photo-polymerization of soil organic matter (SOM): chemical and physical–chemical aspects of SOM in field plots. In: Piccolo A (ed) Carbon sequestration in agricultural soils. Springer Berlin, Heidelberg, pp 61–106

    Chapter  Google Scholar 

  • Spaccini R, Baiano S, Gigliotti G, Piccolo A (2008) Molecular characterization of a compost and its water-soluble fractions. J Agric Food Chem 56:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Spaccini R, Mazzei P, Squartini A, Giannattasio M, Piccolo A (2012) Molecular properties of a fermented manure preparation used as field spray in biodynamic agriculture. Environ Sci Pollut Res 19:4214–4225

    Article  CAS  Google Scholar 

  • Sparling GP, Wheeler D, Vesely ET, Schipper LA (2006) What is soil organic matter worth? J Environ Qual 35:548–557

    Article  PubMed  CAS  Google Scholar 

  • Tittonell P (2014) Ecological intensification of agriculture-sustainable by nature. Curr Opin Environ Sustain 8:53–61

    Article  Google Scholar 

  • Trevisan S, Francioso O, Quaggiotti S, Nardi S (2010) Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plant Signal Behav 5:635–643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vane CH, Martin SC, Snape CE, Abbott GD (2001) Degradation of lignin in wheat straw during growth of the oyster mushroom (Pleurotus ostreatus) using off-line thermochemolysis with tetramethylammonium hydroxide and solid-state 13C NMR. J Agric Food Chem 49:2709–2716

    Article  PubMed  CAS  Google Scholar 

  • Varanini Z, Pinton R, DeBiasi MG, Astolfi S, Maggioni A (1993) Low molecular weight humic substances stimulate H+-ATPase activity of plasma membrane vesicles isolated from oat (Avena sativa L.) roots. Plant Soil 153:61–69

    Article  CAS  Google Scholar 

  • Vaughan D, Malcolm RE (1985) Influence of humic substances on growth and physiological processes. In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Springer, Netherlands, pp 37–75

    Chapter  Google Scholar 

  • Wesolowsk M, Erecińska J (2005) Relation between chemical structure of amino acids and their thermal decomposition: analysis of the data by principal component analysis. J Therm Anal Calorim 82:307–313

    Article  CAS  Google Scholar 

  • Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

In This study was conducted in partial fulfillment of PhD thesis of H.M. and was funded by the European Community’s Seventh Framework Program 662 (FP7/2007–2013) under Grant Agreement no 312117 (BIOFECTOR) and by CORE Organic II (FP7 ERA-NET) under the Grant Agreement no. 249667 (Improve-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincenza Cozzolino or Alessandro Piccolo.

Additional information

Responsible Editor: Tim S. George.

Electronic supplementary material

ESM 1

(DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monda, H., Cozzolino, V., Vinci, G. et al. Molecular composition of the Humeome extracted from different green composts and their biostimulation on early growth of maize. Plant Soil 429, 407–424 (2018). https://doi.org/10.1007/s11104-018-3642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3642-5

Keywords

Navigation