Skip to main content

Advertisement

Log in

Cropping regimes affect NO3 versus NH4+ uptake by Zea mays and Glycine max

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Intercropping cereals with legumes has been practiced for centuries. The benefits have been investigated by measuring biological N fixation and production, but have seldom been evaluated based on plant N acquisition strategies.

Methods

Zea mays and Glycine max were planted under three cropping regimes, i.e., monocropping or intercropping the two species in the same hole (sowing at the same point) or separated at a certain distance. After 50 days, an in situ 15N-labeling experiment was carried out to assess N uptake preference (NO3 or NH4+).

Results

Intercropping in the same hole increased plant density and total biomass. Both species showed a strong preference for NO3 over NH4+. Intercropping in the same hole increased and decreased NO3 uptake by Z. mays and G. max, respectively. Z. mays significantly increased NH4+ uptake when intercropped in the same hole or at a certain distance.

Conclusions

Z. mays and G. max showed strong preference for NO3 over NH4+ irrespective of cropping regime. Intercropping did not influence N preference but altered uptake rates of both N forms. Thus, intercropping in the same hole is a useful practice in agricultural systems because it can increase total biomass and N uptake by Z. mays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andersen MK, Hauggaard-Nielsen H, Ambus P, Jensen ES (2004) Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 266(1–2):273–287

    CAS  Google Scholar 

  • Bergström L, Brink N (1986) Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil. Plant Soil 93(3):333–345

    Article  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584

    Article  CAS  Google Scholar 

  • Chantarotwong W, Huffaker RC, Miller BL, Granstedt RC (1976) In vivo nitrate reduction in relation to nitrate uptake, nitrate content, and in vitro nitrate reductase activity in intact barley seedlings. Plant Physiol 57(4):519–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XG, Zhang FS, van Derwerf W (2015) Intercropping enhances soil carbon and nitrogen. Glob Change Biol 21(4): 1715–1726

  • Cowell LE, Bremer E, Kessel C (1989) Yield and N2 fixation of pea and lentil as affected by intercropping and N application. Can J Soil Sci 69(2):243–251

    Article  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3(10):389–395

    Article  Google Scholar 

  • Cui J, Yu C, Qiao N, Xu XL, Tian YQ, Ouyang H (2017) Plant preference for NH4 + versus NO3 at different growth stages in an alpine agroecosystem. Field Crop Res 201:192–199

    Article  Google Scholar 

  • Dahmardeh M, Ghanbari A, Syahsar BA, Ramrodi M (2010) The role of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afr J Agric Res 5(8):631–636

    Google Scholar 

  • Danso SKA, Zapata F, Hardarson G, Fried M (1987) Nitrogen fixation in fababeans as affected by plant population density in sole or intercropped systems with barley. Soil Biol Biochem 19(4):411–415

    Article  Google Scholar 

  • Day DA, Poole PS, Tyerman SD, Rosendahl L (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376(1–2):1–29

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142

    Article  PubMed  Google Scholar 

  • Fujita K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141(1–2):155–175

    Article  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68(2):280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geβler A, Kopriva S, Rennenberg H (2004) Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24(12):1313–1321

    Article  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65(2):93–106

    Article  Google Scholar 

  • Hardarson G, Atkins C (2003) Optimising biological N2 fixation by legumes in farming systems. Plant Soil 252(1):41–54

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crop Res 70(2):101–109

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Jørnsgaard B, Kinane J, Jensen ES (2008) Grain legume–cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agr Food Syst 23(1):3–12

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Nat Acad Sci 104(21):8902–8906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen ES (1996) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182(1):25–38

    Article  CAS  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biol Biochem 37:413–423

    Article  CAS  Google Scholar 

  • Karpenstein-Machan M, Stuelpnagel R (2000) Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop. Plant Soil 218(1):215–232

    Article  CAS  Google Scholar 

  • Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62(4):1455–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379

    Article  PubMed  Google Scholar 

  • Li B, Li YY, Wu HM, Zhang FF, Li CJ, Li XX, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci 113(23):6496–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CC, Li QR, Qiao N, Xu XL, Li QK, Wang HM (2015) Inorganic and organic nitrogen uptake by nine dominant subtropical tree species. iForest 9:253–258

    Article  CAS  Google Scholar 

  • Li L, Yang SC, Li XL, Zhang FS, Christie P (1999) Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil 212(2):105–114

    Article  CAS  Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5(4):396–410

    Google Scholar 

  • Liu M, Li CC, Xu XL, Wanek W, Jiang N, Wang HM, Yang XD (2017) Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests. Tree Physiol 37:1515–1526

    Article  PubMed  Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdes A, Findlay K (2003) Amino-acid cycling drives nitrogen fixation in the legume-rhizobium symbiosis. Nature 422(6933):722–726

    Article  CAS  PubMed  Google Scholar 

  • Ma BL, Wu TY, Tremblay N, Deen W, McLaughlin NB, Morrison MJ, Stewart J (2010) On-farm assessment of the amount and timing of nitrogen fertilizer on ammonia volatilization. Agron J 102(1):134–144

    Article  CAS  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29(1):43–62

    Article  Google Scholar 

  • Marschner H, Häussling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) karst.] Trees-Struct Funct 5(1):14–21

    Article  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415(6867):68–71

    Article  CAS  PubMed  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370(1–2):1–29

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Ngwira AR, Aune JB, Mkwinda S (2012) On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crop Res 132:149–157

    Article  Google Scholar 

  • Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33(4):651–657

    Article  CAS  Google Scholar 

  • Pelzer E, Hombert N, Jeuffroy MH, Makowski D (2014) Meta-analysis of the effect of nitrogen fertilization on annual cereal–legume intercrop production. Agron J 106(5):1775–1786

    Article  Google Scholar 

  • Poole P, Allaway D (2000) Carbon and nitrogen metabolism in rhizobium. Adv Microb Physiol 43:117–163

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    Article  CAS  PubMed  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Biol 48(1):493–523

    Article  CAS  Google Scholar 

  • van Groenigen JW, Huygens D, Boeckx P, Kuyper TW, Lubbers IM, Rütting T, Groffman PM (2015) The soil N cycle: new insights and key challenges. Soil 1(1):235–256

    Article  Google Scholar 

  • van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crop Res 65(2):165–181

    Article  Google Scholar 

  • World Reference Base for Soil Resources (2006) World soil resources reports 103. FAO, Rome

    Google Scholar 

  • Xu XL, Ouyang H, Cao GM, Richter A, Wanek W, Kuzyakov Y (2011) Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow. Plant Soil 341(1–2):495–504

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microb Mol Biol Rev 63(4):968–989

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31470560 and 41601318) and Youth Innovation Research Team Project (LENOM2016Q0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Qiao.

Additional information

Responsible Editor: Martin Weih

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Qiao, N., Zhang, Q. et al. Cropping regimes affect NO3 versus NH4+ uptake by Zea mays and Glycine max. Plant Soil 426, 241–251 (2018). https://doi.org/10.1007/s11104-018-3625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3625-6

Keywords

Profiles

  1. Min Liu