Skip to main content
Log in

The effects of elevated CO2 and nitrogen availability on rhizosphere priming of soil organic matter under wheat and white lupin

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plants grown under elevated CO2 (eCO2) demand more nitrogen from soil and invest more labile carbon (C) compounds into below-ground. This would potentially affect microbial decomposition of soil organic C (SOC) in the rhizosphere- namely rhizosphere priming effect (RPE). This study aims to reveal how eCO2 and nitrogen (N) supply affect the RPEs under wheat and white lupin.

Methods

Wheat (Triticum aestivum L. cv. Yitpi) and white lupin (Lupinus albus L. cv. Kiev) were grown at two N addition rates under ambient CO2 (400 μmol mol−1) and eCO2 (800 μmol mol−1) for 32 and 52 days in a C4 soil. Rhizosphere priming of SOC was quantified using the stable 13C isotopic tracing technique.

Results

Relative to adequate N supply, low N increased the RPEs under both species at Day 32, but decreased the RPEs under wheat while had no effect on RPE under white lupin at Day 52. Elevated CO2 increased the RPE except that under wheat at Day 52.

Conclusions

Low N availability in soil increased the RPE probably via stimulated microbial N mining while eCO2 and severe N limitation synergistically decreased the RPE under wheat but not under N2-fixing white lupin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews JH, Harris RF (1986) R-and K-selection and microbial ecology. In: Marshall KC (ed) Advances in microbial ecology. Springer science and business media, New York, pp 99–147

    Chapter  Google Scholar 

  • Bengtson P, Barker J, Grayston SJ (2012) Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol 2:1843–1852

    Article  PubMed  PubMed Central  Google Scholar 

  • Billings SA, Ziegler SE (2005) Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Glob Chang Biol 11:203–212

    Article  Google Scholar 

  • Billings SA, Ziegler SE (2008) Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Glob Chang Biol 14:1025–1036

    Article  Google Scholar 

  • Blagodatskaya E, Blagodatsky S, Dorofnikov M, Kuzyakov Y (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Chang Biol 16:836–848

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Burton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR (2004) Simulated chronic NO3 deposition reduces soil respiration in northern hardwood forests. Glob Chang Biol 10:1080–1091

    Article  Google Scholar 

  • Cardon ZG (1996) Influence of rhizodeposition under elevated CO2 on plant nutrition and soil organic matter. Plant Soil 187:277–288

    Article  CAS  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367

    Article  PubMed  Google Scholar 

  • Cheng W (2009) Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biol Biochem 41:1795–1801

    Article  CAS  Google Scholar 

  • Cheng W, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    Article  CAS  Google Scholar 

  • Cheng W, Kuzyakov Y (2005) Root effects on soil organic matter decomposition. In: Wright SF, Zobel RW (eds) Roots and soil management: interactions between roots and the soil, agronomy monograph no. 48. ASA-CSSA-SSSA, Madison, pp 119–143

    Google Scholar 

  • Cheng W, Johnson DW, Fu S (2003) Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization. Soil Sci Soc Am J 67:1418–1427

    Article  CAS  Google Scholar 

  • Choi I-Y, Nguyen HV-M, Choi JH (2017) Effects of controlled environmental changes on the mineralization of soil organic matter. Environ Eng Res 22:347–355

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  • Dijkstra FA, Pendall E, Mosier AR, King JY, Milchunas DG, Morgan JA (2008) Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct Ecol 22:975–982

    Article  Google Scholar 

  • Dijkstra FA, Bader NE, Johnson DW, Cheng W (2009) Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability? Soil Biol Biochem 41:1080–1087

    Article  CAS  Google Scholar 

  • Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol 187:426–437

    Article  CAS  PubMed  Google Scholar 

  • Drake JE, Darby BA, Giasson M-A, Kramer MA, Phillips RP, Finzi AC (2013) Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences 10:821–838

    Article  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Hagedorn F, Maurer S, Bucher JB, Siegwolf RT (2005) Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO2: a 15N and 13C tracer study. Glob Chang Biol 11:1816–1827

    Article  Google Scholar 

  • Health J, Ayres E, Possell M, Bardgett RD, Black HIJ, Grant H, Ineson P, Kerstiens G (2005) Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309:1711–1713

    Article  Google Scholar 

  • Hoosbeek MR, Lukac M, van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressottic A, Cotrufo MF, De Angelis P, Scarascia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE): cause of increased priming effect? Glob Biogeochem Cycles 18:GB1040

    Article  Google Scholar 

  • Hungate BA, Lund CP, Pearson HL, CHAPIN FS III (1997) Elevated CO2 and nutrient addition after soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37:89–109

    Article  CAS  Google Scholar 

  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida Scrub oak. Glob Chang Biol 5:781–789

    Article  Google Scholar 

  • Jin J, Tang C, Robertson A, Franks AE, Armstrong R, Sale P (2014) Increased microbial activity contributes to phosphorus immobilization in the rhizosphere of wheat under elevated CO2. Soil Biol Biochem 75:292–299

    Article  CAS  Google Scholar 

  • Jin J, Tang C, Sale P (2015) The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann Bot 116:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lagomarsino A, Moscatelli MC, Hoosbeek MR, De Angelis P, Grego S (2008) Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant Soil 308:131–147

    Article  CAS  Google Scholar 

  • Li Q, Tian Y, Zhang X, Xu X, Wang H, Kuzyakov Y (2017) Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature. Appl Soil Ecol 114:152–160

    Article  Google Scholar 

  • Liljeroth E, Kuikman P, Van Veen J (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant Soil 161:233–240

    Article  Google Scholar 

  • Liu X-JA, van Groenigen KJ, Dijkstra P, Hungate BA (2017) Increased plant uptake of native soil nitrogen following fertilizer addition–not a priming effect? Appl Soil Ecol 114:105–110

    Article  Google Scholar 

  • Loiseau P, Soussana JF (1999) Elevated [CO2], temperature increase and N supply effects on the turnover of below-ground carbon in a temperate grassland ecosystem. Plant Soil 210:233–247

    Article  CAS  Google Scholar 

  • Nie M, Pendall E (2016) Do rhizosphere priming effects enhance plant nitrogen uptake under elevated CO2? Agric Ecosyst Environ 224:50–55

    Article  CAS  Google Scholar 

  • Nie M, Bell C, Wallenstein MD, Pendall E (2015) Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2. Sci Report 5:1–6

    CAS  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Chang Biol 11:1745–1753

    Article  Google Scholar 

  • Panikov NS, Sizova MV (1996) A kinetic method for estimating the biomass of microbial functional groups in soil. J Microbiol Methods 24:219–230

    Article  Google Scholar 

  • Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3:363–377

    Article  Google Scholar 

  • Peñuelas J, Estiarte M, Kimball BA, Idso SB, Pinter Jr PJ, Wall GW, Garcia RL, Hansaker DJ, LaMorte RL, Hendrix DL (1996) Variety of responses of plant phenolic concentration to CO2 enrichment. J Exp Bot 47:1463–1467

    Article  Google Scholar 

  • Peñuelas J, Estiarte M, Llusia J (1997) Carbon-based secondary compounds at elevated CO2. Photosynthetica 33:313–319

    Article  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  PubMed  Google Scholar 

  • Pianka ER (1970) On r-and K-selection. Am Nat 104:592–597

    Article  Google Scholar 

  • Poorter H, van Berkel Y, Baxter R, Hertog JD, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J, Wong SC (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ 20:472–482

    Article  CAS  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angel JS, Bottomley PS (eds) Methods of soil analysis, part 2. Microbiological and biochemical properties. Soil Sci Soc am book series no. 5. SSSA, Madison, pp 775–833

    Google Scholar 

  • Tarnawski S, Aragno M (2006) The influence of elevated [CO2] on diversity, activity and biogeochemical functions of rhizosphere and soil bacterial communities. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2. Ecological studies (analysis and synthesis), vol 187. Springer, Berlin, pp 393–412

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vestergård M, Reinsch S, Bengtson P, Ambus P, Christensen S (2016) Enhanced priming of old, not new soil carbon at elevated atmospheric CO2. Soil Biol Biochem 100:140–148

    Article  Google Scholar 

  • Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933

    Article  CAS  Google Scholar 

  • Wang H, Boutton TW, Xu W, Hu G, Jiang P, Bai E (2015) Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Sci Report 5:10102

    Article  CAS  Google Scholar 

  • Wang X, Tang C, Severi J, Butterly CR, Baldock JA (2016) Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol 211:864–873

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf L, Le Bayon R-C, Kohler F, Page W, Jossi M, Gobat J, Martinoia E, Aragno M (2008) Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: a one-year microcosm study on lupin and wheat. Soil Biol Biochem 40:1772–1780

    Article  CAS  Google Scholar 

  • Xu Q, Wang X, Tang C (2017) Wheat and white lupin differ in rhizosphere priming of soil organic carbon under elevated CO2. Plant Soil 421:43–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Colin Seis for providing the C4 soil, Mark Richards for providing the white lupin seeds, and Jinlong Dong, Dominic Lauricella, Anan Wang and Eric Zhang for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixian Tang.

Additional information

Responsible Editor: Zucong Cai.

Electronic supplementary material

Table S1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Wang, X. & Tang, C. The effects of elevated CO2 and nitrogen availability on rhizosphere priming of soil organic matter under wheat and white lupin. Plant Soil 425, 375–387 (2018). https://doi.org/10.1007/s11104-018-3601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3601-1

Keywords

Navigation