Skip to main content
Log in

Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and Caspase-dependent apoptosis signaling pathways in receptor plant cells

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study aims to explain the mechanism of action of allelochemical effect of Chenopodium ambrosioides L. volatile oil on mitochondrial characteristics of receptor plants.

Methods

This study chose maize (Zea mays L.), which is widely grown in C. ambrosioides invaded field as the receptor plant, and investigated the allelochemical effect of C. ambrosioides volatile oil and its two main components (α-terpinene and cymene) on maize root tip cells using a suspended gas method and TdT-mediated dUTP Nick-End Labeling (TUNEL) assays. The allelochemical effect on the relative expression of the apoptosis-associated type II Metacaspase gene ZmMCII was measured by quantitative real time polymerase chain reaction (qRT-PCR). The allelochemical effect on mitochondrial characteristics was analyzed by staining assays.

Results

The results showed that applications of C. ambrosioides volatile oil, α-terpinene, and cymene on maize root tip cells caused membrane lipid peroxidation, increased mitochondrial H2O2 and MDA contents, decreased mitochondrial membrane potential, released mitochondrial Cyt c and Ca2+ into the cytoplasm, and increased cytosolic Ca2+ level and expression of the type II Metacaspase gene ZmMCII. These apoptotic effects were time-dependent.

Conclusions

It suggested that C. ambrosioides volatile allelochemicals induced accumulation of reactive oxygen species (ROS) and triggered mitochondrion-mediated Ca2+- and Caspase-dependent apoptosis signaling pathways in receptor plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad R, Zuily-Fodil Y, Passaquet C, Bethenod O, Roche R, Repellin A (2012) Ozone and aging up-regulate type II metacaspase gene expression and global metacaspase activity in the leaves of field-grown maize (Zea mays L.) plants. Chemosphere 87:789–795. https://doi.org/10.1016/j.chemosphere.2011.12.081

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380. https://doi.org/10.1126/science.1083245

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Daudi A (2009) Reactive oxygen species in plant-pathogen interactions. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Chen B, Wang YN, Ma DW, Hu ZL, He YQ, Zhou J (2015) Allelopathic effects of Chenopodium ambrosioides L. on antioxidant enzyme activity and gene expression in maize root. Ecol Environ Sci 24:1640–1646

    Google Scholar 

  • Chen B, Zhou J, Gou X, Ma DW, Wang YN, Hu ZL, He YQ (2016) Volatiles from Chenopodium ambrosioides L. induce the oxidative damage in maize (Zea mays L.) radicles. Allelopath J 38:171–181

    Google Scholar 

  • Chen YQ, Ye BY, Gao YP, Chen WL (2000) Changes of the level of Ca2+ in cells of loquat leaflets under low temperature stress. Wuhan Bot Res 18:138–142

    Google Scholar 

  • Ciniglia C, Mastrobuoni F, Scortichini M, Petriccione M (2015) Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. Ecotoxicology 24:926–937. https://doi.org/10.1007/s10646-015-1435-7

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Hu WJ, Ma DW, Wang YL, Zhang H, Li Q (2011) Allelopathic potential of volatile oil from Chenopodium ambrosioides L. on root tip cells of Vicia faba. Acta Ecol Sin 31:3684–3690

    Google Scholar 

  • Hu ZL, Wang YN, Ma DW, Chen B, He YQ, Zhou J (2015) The alleviate effect of extracellular DNA and protein in maize root border cells on the allelochemical stress from Chenopodium ambrosioides L. Sci Agric Sin 48:1962–1970

    CAS  Google Scholar 

  • Jimenez-Osornio FMVZJ, Kumamoto J, Wasser C (1998) Allelopathic activity of Chenopodium ambrosioides L. Biochem Syst Ecol 24:195–205

    Article  Google Scholar 

  • Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341–2355. https://doi.org/10.1105/tpc.106.041509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JJ, Liu A, Wang P, Chen LM, Nian HJ (2014) Root tip cell mitochondria involvement in programmed cell death induced by aluminum stress of tamba black soybean (Glycine max). J Agric Biotechnol 22:712–719

    CAS  Google Scholar 

  • Ma DW, Wang YN, Wang Y, Zhang H, Liao Y, He B (2015) Research progress on plant cell injury induced by allelopathy. Acta Ecol Sin 35:1640–1645

    Google Scholar 

  • Ma HY, Lu DG, Yang HQ (2010) The effects of NaCl stress on mitochondrial characteristics and cell death in Malus hupehensis var.pingyiensis roots. Chin J Plant Ecol 34:1448–1453

    CAS  Google Scholar 

  • Ma HY, Yang HQ (2006) Effects of exogenous H2O2 on mitochondrial membrane permeability and nuclear DNA in Malus hupehensis var.pingyiensis roots. J Plant Physiol Mol Biol 32:551–556

    CAS  Google Scholar 

  • Meng QH, Huang HY, Liu Y, Liu XG, Wei SH, Zhang CY (2009) The chemical components of the volatile oil of Sorghum halfpense and its allelopathic potential. J Plant Prot 36:277–282

    CAS  Google Scholar 

  • Muller CH, del Moral R (1966) Soil toxicity induced by terpenes from Salvia leucophylla. Bull Torrey Bot Club 93:130–137

    Article  CAS  Google Scholar 

  • Qu Y, Guo K, Li JS, Wei YL, Yang HT (2013) The effects of exogenous nitric oxide donor on peppermint adventitious roots in response to salt stress. Shandong Sci 26:33–38

    CAS  Google Scholar 

  • Raoof KMA, Siddiqui MB (2013) Allelotoxic effect of parthenin on cytomorphology of broad bean (Vicia faba L.) J Saudi Soc Agric Sci 12:143–146

    Google Scholar 

  • Rurek M (2014) Plant mitochondria under a variety of temperature stress conditions. Mitochondrion 19 Pt B:289–294. https://doi.org/10.1016/j.mito.2014.02.007

    Article  PubMed  Google Scholar 

  • Shao XJ, Yang HQ, Qiao HF, Zhang L, You SZ (2009) Effects of cadmium chloride on root system and root activity of grape. Chin J Appl Ecol 20:1390–1394

    CAS  Google Scholar 

  • Tonshin AA, Saprunova VB, Solodovnikova IM, Bakeeva LE, Yaguzhinsky LS (2003) Functional activity and ultrastructure of mitochondria isolated from myocardial apoptotic tissue. Biochem Biokhim 68:875–881

    Article  CAS  Google Scholar 

  • Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    CAS  PubMed  Google Scholar 

  • Wu JL, Ma DW, Wang YN (2014) Cytotoxicity of essential oil of Chenopodium ambrosioides L. against human breast cancer MCF-7 cells. Trop J Pharm Res 12:929–933

    Article  Google Scholar 

  • Xu HG, Qiang S (2004) Catalogue of invasive foreign species in China. China Environ Sci, Beijing

  • Zhan J, Kou RJ, Li CZ, He HY, He LF (2009) The effects of aluminum stress on physiological characteristics of mitochondrial membrane in peanut root tip cells. Acta Agron Sin 35:1059–1067

    Article  CAS  Google Scholar 

  • Zhang S, Cui J, Shen PP (2007) Calcium regulation of apoptosis. Chin J Cell Biol 29:785–790

    CAS  Google Scholar 

  • Zhao SJ, Xu CC, Zou Q, Meng QW (1994) Improvement of determination method of malondialdehyde (MDA) in plant tissues. Plant Physiol J 3:207–210

    Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Natural Science Foundation of China (Project No. 31370549) and Key Program for Basic Research of Sichuan Province (Project No. 2017JY0017).

Author contribution statement

All authors conceived and designed research. YH and BC conducted experiments. DM, YH, YW and BH contributed to data acquisition. DM, YH, YW and BH contributed to the analysis and interpretation of data. JL and DM wrote and revised the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danwei Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Open access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Additional information

Responsible Editor: Timothy Cavagnaro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., He, Y., Ma, D. et al. Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and Caspase-dependent apoptosis signaling pathways in receptor plant cells. Plant Soil 425, 297–308 (2018). https://doi.org/10.1007/s11104-018-3593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3593-x

Keywords

Navigation