Skip to main content

Advertisement

Log in

Plant community changes after land abandonment control CO2 balance in a dry environment

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Human activities can dramatically alter natural plant communities which, after disturbance cessation, undergo secondary succession. In arid environments plant succession is quite slow, and its link to the carbon (C) cycle is not well known. We assessed changes in C balance on a semiarid plant community along a chronosequence spanning ca. 100 years after land abandonment in an arid environment in SE Spain to examine temporal changes in C following human disturbance.

Methods

We selected 5 individuals of the dominant plant species along five plant community stages differing in the time since land abandonment occurred, and we used a closed-chamber infrared gas analyzer method to estimate the contribution of whole plants and bare soil to community C exchange. We estimated CO2 fluxes for each plant community stage and calculated temporal differences along the chronosequence.

Results

Plant community composition and plant cover changed throughout the chronosequence. Carbon balance was related to changes in plant photosynthesis and plant and soil respiration along the chronosequence. Overall, community C exchange shifted from source to sink as plant colonization progressed. It took 65 years for the system to recover the equivalent C sink capacity of the undisturbed site.

Conclusions

Recovery of arid plant communities after land abandonment may enhance long-term C sequestration and significantly contribute to C balance at the global level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C:

Carbon

NEE:

Net ecosystem exchange

PNE:

Plant net exchange

PR:

Plant respiration

PH:

Plant photosynthesis

PAR:

Photosynthetic active radiation

SR:

Soil respiration

GR:

Gross respiration

GPP:

Gross primary production

SOC:

Soil organic carbon

SE:

Standard Error

References

  • Abella SR (2010) Disturbance and plant succession in the Mojave and Sonoran deserts of the American southwest. Int J Environ Res Public Health 7:1248–1284. https://doi.org/10.3390/ijerph7041248

    Article  PubMed  PubMed Central  Google Scholar 

  • Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. https://doi.org/10.1016/s0065-2504(08)60016-1

    Article  Google Scholar 

  • Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, Wang YP, Wiltshire A, Zaehle S, Zeng N (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–899

    Article  PubMed  Google Scholar 

  • Aiba M, Kurokawa H, Onoda Y, Oguro M, Nakashizuka T, Masaki T (2016) Context-dependent changes in the functional composition of tree communities along successional gradients after land-use change. J Ecol 104:1347–1356. https://doi.org/10.1111/1365-2745.12597

    Article  Google Scholar 

  • Álvaro-Fuentes J, Paustian K (2011) Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: quantifying management and climate effects. Plant Soil 338:261–272. https://doi.org/10.1007/s11104-010-0304-7

    Article  Google Scholar 

  • Anderson K (2007) Temporal patterns in rates of community change during succession. Am Nat 169:780–793

    Article  PubMed  Google Scholar 

  • Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Béziat P, Ceschia E, Dedieu G (2009) Carbon balance of a three crop succession over two cropland sites in south West France. Agric For Meteorol 149:1628–1645. https://doi.org/10.1016/j.agrformet.2009.05.004.

    Article  Google Scholar 

  • Bonet A (2004) Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain: insights for conservation and restoration of degraded lands. J Arid Environ 56:213–233. https://doi.org/10.1016/s0140-1963(03)00048-x

    Article  Google Scholar 

  • Bonet A, Pausas J (2004) Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecol 174:257–270

    Article  Google Scholar 

  • Chamizo S, Serrano-Ortiz P, López-Ballesteros A, Sánchez-Cañete EP, Vicente-Vicente JL, Kowalski AS (2017) Net ecosystem CO2 exchange in an irrigated olive orchard of SE Spain: influence of weed cover. Agric Ecosyst Environ 239:51–64. https://doi.org/10.1016/j.agee.2017.01.016

    Article  CAS  Google Scholar 

  • Chan OC, Casper P, Sha LQ, Feng ZL, Fu Y, Yang XD, Ulrich A, Zou XM (2008) Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbiol Ecol 64:449–458. https://doi.org/10.1111/j.1574-6941.2008.00488.x

    Article  CAS  Google Scholar 

  • Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91:455–463. https://doi.org/10.1093/aob/mcg041

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapin FS, Randerson JT, McGuire AD, Foley JA, Field CB (2008) Changing feedbacks in the climate-biosphere system. Front Ecol Environ 6:313–320. https://doi.org/10.1890/080005

    Article  Google Scholar 

  • Chen H, Fan M, Kuzyakov Y, Billen N, Stahr K (2014) Comparison of net ecosystem CO2 exchange in cropland and grassland with an automated closed chamber system. Nutr Cycl Agroecosyst 98:113–124. https://doi.org/10.1007/s10705-014-9600-6.

    Article  Google Scholar 

  • Clark KL, Gholz HL, Castro MS (2004) Carbon dynamics along a chronosequence of slash pine plantations in North Florida. Ecol Appl 14:1154–1171

    Article  Google Scholar 

  • Craig M, Fraterrigo J (2017) Plant–microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils. Oecologia 184(3):583–596

    Article  PubMed  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. https://doi.org/10.1111/j.1461-0248.2008.01164.x

    Article  PubMed  Google Scholar 

  • Delgado-Balbuena J, Arredondo JT, Loescher HW, Huber-Sannwald E, Chavez-Aguilar G, Luna-Luna M, Barretero-Hernandez R (2013) Differences in plant cover and species composition of semiarid grassland communities of central Mexico and its effects on net ecosystem exchange. Biogeosciences 10:4673–4690. https://doi.org/10.5194/bg-10-4673-2013

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG., González L, Tablada M, Robledo CW (2015) InfoStat versión (2017) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • FAO-Unesco (1974) Soil map of the world. United Nations of Education, Scientific and Cultural, Organization Place de Fontenoy, 75700 Paris

  • Ferlan M, Alberti G, Eler K, Batič F, Peressotti A, Miglietta F, Zaldei A, Simončič P, Vodnik D (2011) Comparing carbon fluxes between different stages of secondary succession of a karst grassland. Agric Ecosyst Environ 140:199–207

    Article  Google Scholar 

  • Gaitán JJ, Bran DE, Oliva GE, Aguiar MR, Buono GG, Ferrante D, Nakamatsu V, Ciari G, Salomone JM, Massara V, García Martínez G, Maestre FT (2017) Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Degrad Dev. https://doi.org/10.1002/ldr.2694

  • Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Chang Biol 17:855–871. https://doi.org/10.1111/j.1365-2486.2010.02274.x

    Article  Google Scholar 

  • Holden SR, Gutierrez A, Treseder KK (2013) Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16:34–46

    Article  CAS  Google Scholar 

  • Huang W, Liu J, Han T, Zhang D, Huang S, Zhou G (2017) Different plant covers change soil respiration and its sources in subtropics. Biol Fertil Soils 53:469–478

    Article  CAS  Google Scholar 

  • Kidane Y, Stahlmann R, Beierkuhnlein C (2012) Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ Monit Assess 184:7473–7489. https://doi.org/10.1007/s10661-011-2514-8.

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Poorter H, van Vuuren M.M.I. (1998) Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences. Backluys Publishers, Leiden

  • Lambin EF, Geist H (2006) Land-use and land-cover change: local processes and global impacts. Springer London, Limited

    Book  Google Scholar 

  • Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J (2001) Analysis of a 30-year rainfall record (1967-1997) in semi-arid SE spain for implications on vegetation. J Arid Environ 48:373–395. https://doi.org/10.1006/jare.2000.0755

    Article  Google Scholar 

  • Lozano YM, Hortal S, Armas C, Pugnaire FI (2014) Interactions among soil, plants, and microorganisms drive secondary succession in dry environments. Soil Biol Biochem 78:298–306

    Article  CAS  Google Scholar 

  • Luan J, Liu S, Wang J, Zhu X, Shi Z (2011) Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biol Biochem 43:503–512

    Article  CAS  Google Scholar 

  • Maestre FT, Bowker MA, Puche MD, Hinojosa BM, Martínez I, García-Palacios P, Castillo AP, Soliveres S, Luzuriaga AL, Sánchez AM, Carreira JA, Gallardo A, Escudero A (2009) Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol Lett 12:930–941. https://doi.org/10.1111/j.1461-0248.2009.01352.x

    Article  PubMed  Google Scholar 

  • Martínez-García LB, Armas C, Miranda JDD, Padilla FM, Pugnaire FI (2011) Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biol Biochem 43:682–689

    Article  Google Scholar 

  • Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061. https://doi.org/10.5194/bg-8-2047-2011

    Article  Google Scholar 

  • Muñoz-Rojas M, Jordán A, Zavala LM, DDl R, Abd-Elmabod SK, Anaya-Romero M (2015) Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956–2007). Land Degrad Dev 26:168–179. https://doi.org/10.1002/ldr.2194

    Article  Google Scholar 

  • Noormets A, Chen J, Crow TR (2007) Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA. Ecosystems 10:187–203. https://doi.org/10.1007/s10021-007-9018-y.

    Article  CAS  Google Scholar 

  • Osono T, Azuma J, Hirose D (2013) Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils. Plant Soil 375:411–421

    Google Scholar 

  • Parcerisas L, Marull J, Pino J, Tello E, Coll F, Basnou C (2012) Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (el Maresme County, 1850-2005). Environ Sci Pol 23:120–132. https://doi.org/10.1016/j.envsci.2012.08.002

    Article  Google Scholar 

  • Parsons AJ (2014) Abandonment of agricultural land, agricultural policy and land degradation in Mediterranean Europe. In: Mueller EN, Wainwright J, Parsons AJ, Turnbull L (eds) Patterns of land degradation in drylands: understanding self-organised Ecogeomorphic systems. Springer Netherlands, Dordrecht

    Google Scholar 

  • Pérez Pujalte A, Oyonarte C, García-Chicano JL, Burgos R, Quesada MC, Guirado JL, Díaz JL (1987) Mapa de Suelos de Tabernas a escala 1:100.000. Revisatlas, Madrid

  • Plaza-Bonilla D, Arrúe JL, Cantero-Martínez C, Fanlo R, Iglesias A, Álvaro-Fuentes J (2015) Carbon management in dryland agricultural systems. A review. Agron Sustain Dev 35:1319–1334. https://doi.org/10.1007/s13593-015-0326-x

    Article  Google Scholar 

  • Poschlod P, Bakker JP, Kahmen S (2005) Changing land use and its impact on biodiversity. Basic App Ecol 6:93–98. https://doi.org/10.1016/j.baae.2004.12.001

    Article  Google Scholar 

  • Poyatos R, Heinemeyer A, Ineson P, Evans JG, Ward HC, Huntley B, Baxter R (2014) Environmental and vegetation drivers of seasonal CO2 fluxes in a sub-arctic forest-mire ecotone. Ecosystems 17:377–393. https://doi.org/10.1007/s10021-013-9728-2

    Article  CAS  Google Scholar 

  • Prevosto B, Kuiters L, Bernhardt-Romermann M, Dolle M, Schmidt W, Hoffmann M, Van Uytvanck J, Bohner A, Kreiner D, Stadler J, Klotz S, Brandl R (2012) Impacts of land abandonment on vegetation: successional pathways in European habitats (vol 46, pg 303, 2011). Folia Geobot 47:117–118. https://doi.org/10.1007/s12224-012-9121-5

    Article  Google Scholar 

  • R-Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL http://www.R-project.org/

    Google Scholar 

  • Rey A, Pegoraro E, Oyonarte C, Were A, Escribano P, Raimundo J (2011) Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biol Biochem 43:393–403. https://doi.org/10.1016/j.soilbio.2010.11.007

    Article  CAS  Google Scholar 

  • Reynolds J, Stafford Smith DM, Lambin E, Turner BL, Mortimore M, Downing TE, Huber-Sannwald E, Dowlatabadi H, Fernández R, Herrick J, Huber Sannwald E, Jiang H, Leemans R, Lynam T, Maestre F, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847–851

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754. https://doi.org/10.1111/j.1461-0248.2004.00620.x

    Article  Google Scholar 

  • Rosenzweig S, Carson M, Baer S, Blair J (2016) Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration. Appl Soil Ecol 100:186–194

    Article  Google Scholar 

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27. https://doi.org/10.1007/s10533-004-5167-7

    Article  Google Scholar 

  • Samaritani E, Siegenthaler A, Yli-Petäys M, Buttler A, Christin P-A, Mitchell EAD (2011) Seasonal net ecosystem carbon exchange of a regenerating cutaway bog: how long does it take to restore the C-sequestration function? Restor Ecol 19:480–489. https://doi.org/10.1111/j.1526-100X.2010.00662.x

    Article  Google Scholar 

  • Schenk HJ, Jackson R (2002a) The global biogeography of roots. Ecol Monogr 72:311–328. https://doi.org/10.2307/3100092

    Article  Google Scholar 

  • Schenk HJ, Jackson R (2002b) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Scott AJ, Morgan JW (2012) Recovery of soil and vegetation in semi-arid Australian old fields. J Arid Environ 76:61–71. https://doi.org/10.1016/j.jaridenv.2011.08.014

    Article  Google Scholar 

  • Serrano Ortiz P, Oyonarte C, Pérez Priego O, Reverter B, Sánchez Cañete E, Were A, Uclés O, Morillas L, Domingo F (2014) Ecological functioning in grass–shrub Mediterranean ecosystems measured by eddy covariance. Oecologia 175:1005–1017

    Article  PubMed  Google Scholar 

  • Tang J, Bolstad PV, Martin JG (2009) Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Glob Chang Biol 15:145–155

    Article  Google Scholar 

  • Tedeschi V, Rey A, Manca G, Valentini R, Jarvis PJ, Borghetti M (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Chang Biol 12:110–121

    Article  Google Scholar 

  • Turrini A, Caruso G, Avio L, Gennai C, Palla M, Agnolucci M, Tomei P, Giovannetti M, Gucci R (2017) Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. Appl Soil Ecol 116:70–78

    Article  Google Scholar 

  • UN (2011) Global drylands: a UN system-wide response. United Nations, United Nations Environment Management Group

    Google Scholar 

  • Wang J, Epstein HE (2013) Estimating carbon source-sink transition during secondary succession in a Virginia valley. Plant Soil 362:135–147. https://doi.org/10.1007/s11104-012-1268-6

    Article  CAS  Google Scholar 

  • Wang J, Epstein H, Wang L (2010) Soil CO2 flux and its controls during secondary succession. J Geophys Res 115. https://doi.org/10.1029/2009JG001084.

  • Ward SE, Bardget RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct Ecol 23:454–462. https://doi.org/10.2307/40205550

    Article  Google Scholar 

  • Zhang K, Cheng X, Dang H, Ye C, Zhang Y, Zhang Q (2013) Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biol Biochem 57:803–813

    Article  CAS  Google Scholar 

  • Zhang C, Liu GB, Xue S, Wang GL (2016) Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the loess plateau. Soil Biol Biochem 97:40–49. https://doi.org/10.1016/j.soilbio.2016.02.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Javier Toledo for field and technical support, Fernando Casanoves for statistical advice and Sonia Chamizo and Michel O’Brien for comments on an early draft of this manuscript. This work was funded by MINECO (grant CGL2014-59010-R). CE received a FPI doctoral fellowship (BES2011-044322) and CA received a “Ramón y Cajal” research contract (RYC-2012-12277) from the Spanish Government.

Author information

Authors and Affiliations

Authors

Contributions

CE, YML and FIP designed the study. CE performed research. CE, CA and YML analyzed data. CE wrote the paper with significant improvements from all other authors.

Corresponding author

Correspondence to Carme Estruch.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Lucas Silva.

Electronic supplementary material

ESM 1

(DOC 1.33 mb)

ESM 2

(DOC 144 kb)

ESM 1

(DOC 15.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estruch, C., Lozano, Y.M., Armas, C. et al. Plant community changes after land abandonment control CO2 balance in a dry environment. Plant Soil 425, 253–264 (2018). https://doi.org/10.1007/s11104-018-3581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3581-1

Keywords

Navigation