Advertisement

Plant and Soil

, Volume 425, Issue 1–2, pp 71–85 | Cite as

Effects of biochar on carbon and nitrogen fluxes in boreal forest soil

  • Marjo Palviainen
  • Frank Berninger
  • Viktor J. Bruckman
  • Kajar Köster
  • Christine Ribeiro Moreira de Assumpção
  • Heidi Aaltonen
  • Naoki Makita
  • Anup Mishra
  • Liisa Kulmala
  • Bartosz Adamczyk
  • Xuan Zhou
  • Jussi Heinonsalo
  • Egle Köster
  • Jukka Pumpanen
Regular Article

Abstract

Background and aims

The addition of biochar to soil may offer a chance to mitigate climate change by increasing soil carbon stocks, improving soil fertility and enhancing plant growth. The impacts of biochar in cold environments with limited microbial activity are still poorly known.

Methods

In order to understand to what extent different types and application rates of biochar affect carbon (C) and nitrogen (N) fluxes in boreal forests, we conducted a field experiment where two different spruce biochars (pyrolysis temperatures 500 °C and 650 °C) were applied at the rate of 0, 5 and 10 t ha−1 to Pinus sylvestris forests in Finland.

Results

During the second summer after treatment, soil CO2 effluxes showed no clear response to biochar addition. Only in June, the 10 t ha−1 biochar (650 °C) plots had significantly higher CO2 effluxes compared to the control plots. The pyrolysis temperature of biochar did not affect soil CO2 effluxes. Soil pH increased in the plots receiving 10 t ha−1 biochar additions. Biochar treatments had no significant effect on soil microbial biomass and biological N fixation. Nitrogen mineralization rates in the organic layer tended to increase with the amount of biochar, but no statistically significant effect was detected.

Conclusions

The results suggest that wood biochar amendment rates of 5–10 t ha−1 to boreal forest soil do not cause large or long-term changes in soil CO2 effluxes or reduction in native soil C stocks. Furthermore, the results imply that biochar does not adversely affect soil microbial biomass or key N cycling processes in boreal xeric forests, at least within this time frame. Thus, it seems that biochar is a promising tool to mitigate climate change and sequester additional C in boreal forest soils.

Keywords

Biochar Biological nitrogen fixation Microbial biomass Nitrogen mineralization Nitrification Soil respiration 

Notes

Acknowledgements

This study was funded by The Foundation for Research of Natural Resources in Finland (2016085). The study was also supported by the Academy of Finland (286685, 294600, 307222, 277623) and the FCoE of atmospheric sciences (Center of Excellence (1118615). We thank for the staff of Hyytiälä Forestry Field Station for supporting us in the field work and Marjut Wallner for help with laboratory analyses.

Supplementary material

11104_2018_3568_MOESM1_ESM.docx (38 kb)
ESM 1 (DOCX 38 kb)

References

  1. Adamczyk S, Adamczyk B, Kitunen V, Smolander A (2015) Monoterpenes and higher terpenes may inhibit enzyme activities in boreal forest soil. Soil Biol Biochem 87:59–66CrossRefGoogle Scholar
  2. Adamczyk B, Karonen M, Adamczyk S, Engström MT, Laakso T, Saranpää P, Kitunen V, Smolander A, Simon J (2017) Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol Biochem 107:60–67CrossRefGoogle Scholar
  3. Ameloot N, Graber ER, Verheijen FGA, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390CrossRefGoogle Scholar
  4. Ameloot N, Sleutel S, Das KC, Kanagaratnam J, De Neve S (2015) Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy 7:135–144CrossRefGoogle Scholar
  5. Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320CrossRefGoogle Scholar
  6. Ball PN, MacKenzie MD, DeLuca TH, Holben WE (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane Forest soils. J Environ Qual 39:1243–1253CrossRefPubMedGoogle Scholar
  7. Beck T, Joergensen RG, Kandeler E, Makeshin E, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032CrossRefGoogle Scholar
  8. Berglund LM, DeLuca TH, Zackrisson O (2004) Activated carbon amendments to soil alters nitrification rates in scots pine forests. Soil Biol Biochem 36:2067–2073CrossRefGoogle Scholar
  9. Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214CrossRefGoogle Scholar
  10. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842CrossRefGoogle Scholar
  11. Brown DH, Bates JW (1990) Bryophytes and nutrient cycling. Bot J Linn Soc 104:129–147CrossRefGoogle Scholar
  12. Bruckman VJ, Terada T, Uzun BB, Apaydin-Varol E, Liu J (2015) Biochar for climate change mitigation: tracing the in situ priming effect on a forest site. Energy Procedia 76:381–387CrossRefGoogle Scholar
  13. Bruckman VJ, Klinglmüller M, Milenković M (2016) Biochar in the view of climate change mitigation: the FOREBIOM experience. In: Bruckman VJ, Apaydın-Varol E, Uzun BB, Liu J (eds.). Biochar: a regional supply chain approach in view of climate change mitigation. Cambridge University press: New York, Cambridge.  https://doi.org/10.1017/9781316337974
  14. Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79CrossRefGoogle Scholar
  15. Cajander AK (1949) Forest types and their significance. Acta For Fenn 56:71Google Scholar
  16. Case SDC, McNamara NC, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185CrossRefGoogle Scholar
  17. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty E, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645CrossRefGoogle Scholar
  18. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223CrossRefPubMedGoogle Scholar
  19. Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134CrossRefGoogle Scholar
  20. DeLuca TH, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and modelling. Forestry 85:161–184CrossRefGoogle Scholar
  21. DeLuca TH, Nilsson M-C, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214CrossRefPubMedGoogle Scholar
  22. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453CrossRefGoogle Scholar
  23. DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152(1):121–130CrossRefPubMedGoogle Scholar
  24. DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181CrossRefPubMedGoogle Scholar
  25. Dempster DN, Gleeson DB, Solaiman ZM, Jones DL, Murphy DV (2012) Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324CrossRefGoogle Scholar
  26. Fang Y, Singha B, Singh BP (2015) Effect of temperature on biochar priming effects and its stability in soils. Soil Biol Biochem 80:136–145CrossRefGoogle Scholar
  27. Gentili F, Nilsson M-C, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56(422):3121–3127CrossRefPubMedGoogle Scholar
  28. Granhall U, Lindberg T (1980) Nitrogen input through biological nitrogen fixation. In: Persson T (ed) Structure and function of northern coniferous forests – an ecosystem study, Ecol Bull, vol 32, pp 333–340Google Scholar
  29. Güereña DT, Lehmann J, Thies JE, Enders A, Karanja N, Neufeldt H (2015) Partitioning the contributions of biochar properties to enhanced biological nitrogen fixation in common bean (Phaseolus vulgaris). Biol Fertil Soils 51:479–491CrossRefGoogle Scholar
  30. Gundale MJ, DeLuca TH, Nordin A (2011) Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob Chang Biol 17:2743–2753CrossRefGoogle Scholar
  31. Gundale MJ, Nilsson M-C, Pluchon N, Wardle DA (2015) The effect of biochar management on soil and plant community properties in a boreal forest. GCB Bioenergy.  https://doi.org/10.1111/gcbb.12274
  32. Gurwick NP, Moore LA, Kelly C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS One 8(9):e75932.  https://doi.org/10.1371/journal.pone.0075932 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SLS, Rillig MC (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem 77:252–260CrossRefGoogle Scholar
  34. He Y, Zhou X, Jiang L, Li M, Du Z, Zhou G, Shao J, Wang X, Xu Z, Bai SH, Wallace H, Xu C (2017) Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9:743–755CrossRefGoogle Scholar
  35. Helmisaari H-S, Kaarakka L, Olsson BA (2014) Increased utilization of different tree parts for energy purposes in the Nordic countries. Scand J For Res 29(4):312–322CrossRefGoogle Scholar
  36. IUSS Working group WRB (2015) world Reference Base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, RomeGoogle Scholar
  37. Jones DL, Murphy DV, Khalid M, Ahmadd W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731CrossRefGoogle Scholar
  38. Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173–1181CrossRefGoogle Scholar
  39. Korhonen JFJ, Pihlatie M, Pumpanen J, Aaltonen H, Hari P, Levula J, Kieloaho A-J, Nikinmaa E, Vesala T, Ilvesniemi H (2013) Nitrogen balance of a boreal scots pine forest. Biogeosciences 10:1083–1095CrossRefGoogle Scholar
  40. Kulmala L, Launiainen S, Pumpanen J, Lankreijer H, Lindroth A, Hari P, Vesala T (2008) H2O and CO2 fluxes at the floor of a boreal pine forest. Tellus, series B: Chem Phys Meteorol 60 B: 167–178Google Scholar
  41. Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442CrossRefGoogle Scholar
  42. Lehmann J, Joseph S (2012) Biochar for environmental management – science and technology. MBG Books, UK. 415 pGoogle Scholar
  43. Lehmann J, Rillig MC, Thies J, Masiello CA, Kockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836CrossRefGoogle Scholar
  44. Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13:1561–1572CrossRefGoogle Scholar
  45. Leppänen SM, Salemaa M, Smolander A, Mäkipää R, Tiirola M (2013) Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient. Environ Exp Bot 90:62–69CrossRefGoogle Scholar
  46. Limmer C, Drake HL (1996) Nonsymbiotic N2-fixation in acidic and pH-neutral forest soils: aerobic and anaerobic differentials. Soil Biol Biochem 28:177–183CrossRefGoogle Scholar
  47. Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou JIE, Jin Y, Zou J (2015) Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy.  https://doi.org/10.1111/gcbb.12265
  48. Mia S, van Groenigen JW, van de Voorde TFJ, Oram NJ, Bezemer TM, Mommer L, Jeffery S (2014) Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric Ecosyst Environ 191:83–91CrossRefGoogle Scholar
  49. Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254CrossRefGoogle Scholar
  50. Mitchell PJ, Simpson AJ, Soong R, Schurman JS, Thomas SC, Simpson MJ (2016) Biochar amendment and phosphorus fertilization altered forest soil microbial community and native soil organic matter molecular composition. Biogeochem 130:227–245CrossRefGoogle Scholar
  51. Nelissen V, Rütting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27CrossRefGoogle Scholar
  52. Nohrstedt H-Ö (1985) Nonsymbiotic nitrogen fixation in the topsoil of some forest stands in central Sweden. Can J For Res 15:715–722CrossRefGoogle Scholar
  53. Noyce GL, Basiliko N, Fulthorpe R, Sackett TE, Thomas SC (2015) Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biol Fertil Soils 51:649–659CrossRefGoogle Scholar
  54. Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695CrossRefGoogle Scholar
  55. Page-Dumroese DS, Coleman MD, Thomas SC (2017) Opportunities and uses of biochar on forest sites in North America [chapter 15]. In: Bruckman V, Varol EA, Uzun B, Liu J (eds) Biochar: a regional supply chain approach in view of climate change mitigation. Cambridge University Press, Cambridge, UK, pp 315–335Google Scholar
  56. Palviainen M, Berninger F, Zhu T, Köster K, Bruckman V, Moreira De Assumpção C, Mishra A, Pumpanen J (2017a) Short-term effects of biochar on carbon and nitrogen cycling in boreal Scots pine forests. BIOGEOMON 2017, 9th International Symposium on Ecosystem Behavior, August 20–24, 2017, Litomyšl, Czech Republic. Book of abstracts pp. 182–183. http://www.biogeomon.cz/documents/Abstracts.pdf
  57. Palviainen M, Pumpanen J, Berninger F, Ritala K, Duan B, Heinonsalo J, Sun H, Köster E, Köster K (2017b) Nitrogen balance along a northern boreal forest fire chronosequence. PLoS One.  https://doi.org/10.1371/journal.pone.0174720
  58. Pirinen P, Simola H, Aalto J, Kaukoranta J-P, Karlsson P, Ruuhela R (2012) Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute, Helsinki, FinlandGoogle Scholar
  59. Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702CrossRefGoogle Scholar
  60. Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9(1):e86388.  https://doi.org/10.1371/journal.pone.0086388 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pumpanen J, Kulmala L, Lindén A, Kolari P, Nikinmaa E, Hari P (2015) Seasonal dynamics of autotrophic respiration in boreal forest soil estimated by continuous chamber measurements. Bor Environ Res 20:637–650Google Scholar
  62. Robertson SJ, Rutherford PM, López-Gutiérrez JC, Massicotte HB (2012) Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Can J Soil Sci 92:329–340CrossRefGoogle Scholar
  63. Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L) increases with bio-char additions. Biol Fertil Soils 43:699–708CrossRefGoogle Scholar
  64. Sackett TE, Basiliko N, Noyce GL, Winsborough C, Ikeda C, Thomas SC (2014) Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy.  https://doi.org/10.1111/gcbb.12211
  65. Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347CrossRefGoogle Scholar
  66. Smolander A, Kitunen V, Priha O, Mälkönen E (1995) Nitrogen transformations in limed and nitrogen fertilized soil in Norway spruce stands. Plant Soil 17:107–115CrossRefGoogle Scholar
  67. Song X, Pan G, Zhang C, Zhang L, Wang H (2016) Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis. Ecosyst Health Sustainability 2(2):e01202.  https://doi.org/10.1002/ehs2.1202 CrossRefGoogle Scholar
  68. Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Env Sci 3:179–193Google Scholar
  69. Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452CrossRefGoogle Scholar
  70. Sponseller RA, Gundale MJ, Futter M, Ring E, Nordin A, Näsholm T, Laudon H (2016) Nitrogen dynamics in managed boreal forests: recent advances and future research directions. Ambio 45(Suppl. 2):S175–S187CrossRefGoogle Scholar
  71. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310CrossRefGoogle Scholar
  72. Stewart CE, Zheng JY, Botte J, Cotrufo MF (2013) Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. Glob Change Biol Bioenergy 5:153–164CrossRefGoogle Scholar
  73. Thomas SC, Gale G (2015) Biochar and forest restoration: a review and meta-analysis of tree growth responses. New For 46:931–946CrossRefGoogle Scholar
  74. Van Zwieten L, Rose T, Herridge D, Kimber S, Rust J, Cowie A, Morris S (2015) Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: dissection of causal mechanisms. Plant Soil 395:7–20CrossRefGoogle Scholar
  75. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707CrossRefGoogle Scholar
  76. Wang J, Xiong Z, Kuzyakov (2015) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy.  https://doi.org/10.1111/gcbb.12266
  77. Wardle DA, Zackrisson O, Nilsson M-C (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115(3):419–426Google Scholar
  78. Wardle DA, Nilsson M, Zackrisson O (2008) Forest-derived charcoal causes loss of forest humus. Science 320:629CrossRefPubMedGoogle Scholar
  79. Woolf D, Amonette JE, Stree-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(56)Google Scholar
  80. Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10–19CrossRefGoogle Scholar
  81. Zackrisson O, DeLuca TH, Nilsson M-C, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334CrossRefGoogle Scholar
  82. Zheng H, Wang Z, Deng X, Herbert S, Xing BS (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39CrossRefGoogle Scholar
  83. Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marjo Palviainen
    • 1
  • Frank Berninger
    • 1
  • Viktor J. Bruckman
    • 2
  • Kajar Köster
    • 1
  • Christine Ribeiro Moreira de Assumpção
    • 1
  • Heidi Aaltonen
    • 1
  • Naoki Makita
    • 3
  • Anup Mishra
    • 1
  • Liisa Kulmala
    • 1
  • Bartosz Adamczyk
    • 4
  • Xuan Zhou
    • 1
  • Jussi Heinonsalo
    • 1
    • 5
  • Egle Köster
    • 1
  • Jukka Pumpanen
    • 6
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Commission for Interdisciplinary Ecological StudiesAustrian Academy of Sciences (ÖAW)ViennaAustria
  3. 3.Department of Environmental SciencesShinshu UniversityNaganoJapan
  4. 4.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.Climate System ResearchFinnish Meteorological Institute (FMI)HelsinkiFinland
  6. 6.Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland

Personalised recommendations