Assessing soil ecosystem processes – biodiversity relationships in a nature reserve in Central Europe

Abstract

Background and aims

Plant diversity – ecosystem processes relationships are essential to our understanding of ecosystem functioning. We aimed at disentangling the nature of such relationships in a mesotrophic grassland that was highly heterogeneous with regards to nutrient availability.

Methods

Rather than targeting primary productivity, like most existing reports do, we focused our study on belowground ecosystem processes. We tested three, largely mutually exclusive, hypotheses of ecosystem processes relationships: the redundancy hypothesis, the insurance hypothesis and the centrifugal model hypothesis. We sampled the grassland twice within a single plant growing season in a spatially explicit way and assayed the soil for nitrification, urease activity, relative bacterial activity and a microbial community profile based on respiration while we simultaneously assessed plant diversity.

Results

Results supported the centrifugal model. We justify the lack of support for the other two hypotheses on the basis of having conducted an observational study in an environmentally heterogeneous site.

Conclusions

The centrifugal model hypothesis appears to be a very good predictive model for explaining diversity in observational, heterogeneous studies. The specific study represents one of the few observational studies that consider measures of ecosystem functioning other than primary productivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O’Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Lambers JHR, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science 333:1750–1753

    CAS  Article  PubMed  Google Scholar 

  2. Beck TH (1979) Die Nitrifikation in Böden (Sammelreferat). J Plant Nutr Soil Sci 142:299–309

    CAS  Google Scholar 

  3. Byrnes JEK, Gampfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5:111–124

    Article  Google Scholar 

  4. Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277:500–504

    CAS  Article  Google Scholar 

  6. de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795e811

    Article  Google Scholar 

  7. Doak DF, Bigger D, Harding EK, Marvier MA, O'Malley RE, Thomson D (1998) The statistical inevitability of stability-diversity relationships in community ecology. Am Nat 151:264–276

    CAS  PubMed  Google Scholar 

  8. Fagotti DSL, Miyauchi MYH, Oliveira AG, Santinoni IA, Eberhardt DN, Nimtz A, Ribeiro RA, Paula AM, Queiroz CAS, Andrade G, Zangaro W, Nogueira MA (2012) Gradients in N-cycling attributes along forestry and agricultural land-use systems are indicative of soil capacity for N supply. Soil Use Manag 28:292–298

    Article  Google Scholar 

  9. Fornara DA, Tilman D (2009) Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90:408–418

    CAS  Article  PubMed  Google Scholar 

  10. Fridley JD (2001) The influence of species diversity on ecosystem productivity: how, where and why? Oikos 93:514–526

    Article  Google Scholar 

  11. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    CAS  Article  PubMed  Google Scholar 

  12. Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Spehn EM, Wacker L, Weilenmann M, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Dimitrakopoulos PG, Finn JA, Huss-Danell K, Jumpponen A, Leadley PW, Loreau M, Mulder CPH, Neßhöver C, Palmborg C, Read DJ, Siamantziouras SD, Terry AC, Troumbis AY (2007) Biodiversity and ecosystem functioning: reconciling the results of experimental and observational studies. Funct Ecol 21:998–1002

    Article  Google Scholar 

  13. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vendermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  14. Horn S, Hempel S, Ristow M, Rillig MC, Kowarik I, Caruso T (2015) Plant community assembly at small scales: spatial versus environmental factors in a central European grassland. Acta Oecol 63:56–62

    Article  Google Scholar 

  15. Isbell F, Calcagno V, Hector A, Connolly J, Stanley Harpole W, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–196

    CAS  Article  PubMed  Google Scholar 

  16. Ives AR, Hughes JB (2002) General relationships between species diversity and stability in competitive systems. Am Nat 159:388–395

    Article  PubMed  Google Scholar 

  17. Jiang L, Wan SQ, Li LH (2009) Species diversity and productivity: why do results of diversity-manipulation experiments differ from natural patterns? J Ecol 97:603–608

    Article  Google Scholar 

  18. Kahmen A, Perner J, Andorff V, Weisser W, Buchmann N (2005) Effects of plant diversity, community composition and environmental parameters in montane European grasslands. Oecologia 142:605–615

    Article  Google Scholar 

  19. Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    CAS  Article  Google Scholar 

  20. Kang SH, Mills AL (2004) Soil bacterial community structure changes following disturbance of the overlying plant community. Soil Sci 169:55–65

    CAS  Article  Google Scholar 

  21. Keddy PA (1990) Competitive hierarchies and centrifugal organization in plant communities. In: Grace J, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 266–290

    Google Scholar 

  22. Keddy PA, MacLellan P (1990) Centrifugal organization in forests. Oikos 59:75–84

    Article  Google Scholar 

  23. Kreyling J, Beierkuhnlein C, Ellis L, Jentsch A (2008) Invasibility of grassland and heath communities exposed to extreme weather events - additive effects of diversity resistance and fluctuating physical environment. Oikos 117:1542–4554

    Article  Google Scholar 

  24. Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115

    Article  PubMed  Google Scholar 

  25. Loreau M, Mouquet N (1999) Immigration and maintainance of local species diversity. Am Nat 154:427–440

    Article  PubMed  Google Scholar 

  26. MacArthur RH (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36:533–535

    Article  Google Scholar 

  27. Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27:19–26

    Article  PubMed  Google Scholar 

  28. May RM (1972) Will a large complex system be stable? Nature 238:413–414

    CAS  Article  PubMed  Google Scholar 

  29. McNaughton SJ (1977) Diversity and stability of ecological communities - comment on role of empirism in ecology. Am Nat 111:515–525

    Article  Google Scholar 

  30. Mokany K, Asj J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893

    Article  Google Scholar 

  31. Oberdorfer EP (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete, 8th edn. Ulmer, Stuttgart

    Google Scholar 

  32. Odum EP (1953) Fundamentals of ecology. W. B. Saunders, Philadelphia

    Google Scholar 

  33. Penny KI (1996) Appropriate critical values when testing for a single multivariate outlier by using the Mahalanobis distance. Appl Stat 45:73–81

    Article  Google Scholar 

  34. Pimm SL (1982) Food webs. Chapman & Hall, London

    Google Scholar 

  35. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-108

  36. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  37. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514

    Article  PubMed  Google Scholar 

  38. Romanuk TN, Kolasa J (2002) Environmental variability alters the relationship between richness and variability of community abundances in aquatic rock pool microcosms. Ecoscience 9:55–62

    Article  Google Scholar 

  39. Rosenzweig ML, Abramsky Z (1986) Centrifugal community organization. Oikos 46:339–348

    Article  Google Scholar 

  40. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Schulze ED, Mooney HA (1993) Biodiversity and ecosystem function. Springer-Verlag, Berlin

    Google Scholar 

  42. Tetard-Jones C, Kertesz MA, Gallois P, Preziosi RF (2007) Genotype-by-genotype interactions modified by a third species in a plant-insect system. Am Nat 170:492–499

    Article  PubMed  Google Scholar 

  43. Thompson K, Askew AP, Grime JP, Dunnett NP, Willis AJ (2005) Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Funct Ecol 19:355–358

    Article  Google Scholar 

  44. Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365.

  45. Tilman D, Lehman CL, Bristow CE (1998) Diversity-stability relationships: statistical inevitability or ecological consequence? Am Nat 151:277–282

    CAS  PubMed  Google Scholar 

  46. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    CAS  Article  PubMed  Google Scholar 

  47. Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202

    Article  PubMed  Google Scholar 

  48. Valone TJ, Hoffman CD (2003) Population stability is higher in more diverse annual plant communities. Ecol Lett 6:90–95

    Article  Google Scholar 

  49. Vogel A, Eisenhauer N, Weigelt A, Scherer-Lorenzen M (2013) Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties. Glob Chang Biol 19:2795–2803

    Article  PubMed  Google Scholar 

  50. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project was funded by the Dahlem Center of Plant Sciences. We would like to thank Erik Verbruggen, Stefanie Maaß and Daniel Daphi for technical assistance.

Author information

Affiliations

Authors

Contributions

Coordinated the project: SH; Acquired funding for the project: TC, ECH, SH, JK, EKM, SDV; conducted the harvests: TC, ECH, SH, JK, EKM, SDV, NO, JW; conceived the analysis, analyzed the data and wrote the paper: SDV; everybody contributed comments to the manuscript; ECH assayed relative bacterial to fungal activity, JK measured community-level physiological profiles and SDV analyzed urease activity and nitrification rates.

Corresponding author

Correspondence to Stavros D. Veresoglou.

Additional information

Responsible Editor: François Teste.

Electronic supplementary material

ESM 1

(DOC 69 kb)

ESM 2

(XLS 133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caruso, T., Hammer, E.C., Hempel, S. et al. Assessing soil ecosystem processes – biodiversity relationships in a nature reserve in Central Europe. Plant Soil 424, 491–501 (2018). https://doi.org/10.1007/s11104-017-3557-6

Download citation

Keywords

  • The centrifugal model hypothesis
  • Diversity-productivity relationships
  • Ecosystem functioning
  • The insurance hypothesis
  • The redundancy hypothesis