Skip to main content

Origin of silica in rice plants and contribution of diatom Earth fertilization: insights from isotopic Si mass balance in a paddy field

Abstract

Background and aims

The benefits of Si for crops is well evidenced but the biogeochemical cycle of Si in agriculture remains poorly documented. This study aims at identifying and quantifying the Si sources (primary and secondary soil minerals, amorphous silica, irrigation, Si-fertilizer) to rice plants.

Method

Field experiments were carried out with and without application of diatomaceous earth (DE) under rice and bare conditions to determine the water and dissolved mass balance in paddy fields (Karnataka, Southern India). The fate of the Si brought by irrigation (DSi) (uptake by rice, uptake by diatoms, adsorption) was assessed through a solute mass balance combined with silicon isotopic signatures.

Results

Above the ground-surface, about one third of the DSi flux brought by borewell irrigation (545 mmol Si.m−2) to bare plots and half of DSi in rice plots were removed from solution within minutes or hours following irrigation. Such rate is consistent with the rate of DSi adsorption onto Fe-oxyhydroxides but not with diatom blooms. In rice and rice + DE experiments, the isotopic fractionation factor (30ε) between bore well and stagnant water compositions is close to −1 ‰, i.e. the isotopic fractionation factor known for rice, indicating that above-ground DSi removal would be dominated by plant uptake upon adsorption. Within the soil layer, pore water DSi decreases much faster in rice experiments than in bare ones, demonstrating the efficiency of DSi rice uptake upon adsorption. Total irrigation-DSi to plant-Si would then represent 24 to 36% in rice experiments (over 1460 ± 270 mmol Si m−2 in biomass) and 15 to 23% in rice + DE ones (over 2250 ± 180 mmol Si m−2). The δ30Si signature of whole plants was significantly different in the rice + DE plot analyzed, 0.99 ± 0.07 ‰, than in the rice one, 1.29 ± 0.07 ‰. According to these δ30Si signatures, the main Si source from the soil would be the amorphous silica pool (ASi). A slight contribution of DE to the rice plant could be detected from the Si isotopic signature of rice.

Conclusions

The δ30Si signatures of the various soil-plant compartments, when associated to Si mass balance at soil-plant scale, constitute a reliable proxy of the Si sources in paddy fields. The solute Si balance is controlled by rice uptake in rice plots and by adsorption in bare ones. The main Si sources for the rice plants were soil ASi, irrigation Si and to a lesser extent Si fertilizer when it was applied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 6:677–682

    Article  Google Scholar 

  2. Alleman LY, Cardinal D, Cocquyt C, Plisnier PD, Descy JP, Kimirei I, Sinyinza D, André L (2005) Silicon isotopic fractionation in Lake Tanganyika and its main tributaries. J Great Lakes Res 31:509–519

    CAS  Article  Google Scholar 

  3. Allen PA (1997) Earth surface processes. Blackwell, Oxford, p 404

    Book  Google Scholar 

  4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. (FAO, Rome, 1998), 326 p

  5. Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878. https://doi.org/10.2136/sssaj1980.03615995004400040043x

    CAS  Article  Google Scholar 

  6. Braun JJ, Descloitres M, Riotte J, Fleury S, Barbiero L, Boeglin JL, Violette A, Lacarce E, Ruiz L, Sekhar M, Mohan Kumar MS, Subramanian S, Dupré B (2009) Regolith mass balance inferred from combined mineralogical, geochemical and geophysical studies: mule hole gneissic watershed, South India. Geochim Cosmochim Acta 73:935–961

    CAS  Article  Google Scholar 

  7. Brenchley WE, Maskell EJ (1927) The inter-relation between silicon and other elements in plant nutrition. Ann Appl Biol 14:45–82

    CAS  Article  Google Scholar 

  8. Buvaneshwari S, Riotte J, Sekhar M, Mohan Kumar MS, Sharma AK, Duprey JL, Audry S, Giriraja PR, Yerabham P, Moger H, Durand P, Braun JJ, Ruiz L (2017) Groundwater resource vulnerability and spatial variability of nitrate contamination: insights from high density tubewell monitoring in a hard rock aquifer. Sci Total Environ 579:838–847

    CAS  Article  PubMed  Google Scholar 

  9. Cary L, Alexandre A, Meunier JD, Boeglin JL, Braun JJ (2005) Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochem 74:101–114

    Article  Google Scholar 

  10. Cheng BT (1982) Some significant functions of silicon to higher plants. J Plant Nutr 5:1345–1353

    CAS  Article  Google Scholar 

  11. Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on biogenic Si pools in temperate soils. Biogeosciences 8:2281–2293

    CAS  Article  Google Scholar 

  12. Cockerton HE, Street-Perrott FA, Leng MJ, Barker PA, Horstwood MSA, Pashley V (2013) Stable-isotope (H, O, and Si) evidence for seasonal variations in hydrology and Si cycling from modern waters in the Nile Basin: implications for interpreting the quaternary record. Quat Sci Rev 66:4–21

    Article  Google Scholar 

  13. Crooks R, Prentice P (2016) Extensive investigation into field based responses to a silica fertiliser. SILICON 9:301–304. https://doi.org/10.1007/s12633-015-9379-3

    Article  Google Scholar 

  14. Datnoff LE, Rodrigues FA (2005) The role of silicon in suppressing rice diseases. APS net Feature Story, 1–28, http://www.apsnet.org/online/feature/silicon/

  15. Delstanche S, Opfergelt S, Cardinal D, Elsass F, André L, Delvaux L (2009) Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide. Geochim Cosmochim Acta 73:923–934

    CAS  Article  Google Scholar 

  16. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731

    CAS  Article  PubMed  Google Scholar 

  17. Desplanques V, Cary L, Mouret JC, Trolard F, Bourrie G, Grauby O, Meunier JD (2006) Silicon transfers in a rice field in Camargue (France). J Geochem Explor 88:190–193

    CAS  Article  Google Scholar 

  18. Dettinger MD (1989) Reconnaissance estimates of natural recharge to desert basins in Nevada, USA, by using chloride-balance calculations. J Hydrol 106:55–78

    CAS  Article  Google Scholar 

  19. Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68:205–216

    CAS  Article  Google Scholar 

  20. Ding T, Ma G, Shui M, Wan D, Li R (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41–50

    CAS  Article  Google Scholar 

  21. Ding T, Tian SH, Sun L, Wu LH, Zhou JX, Chen ZY (2008) Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle. Geochim Cosmochim Acta 72:600–615

    Google Scholar 

  22. Fontorbe G, De La Rocha C, Chapman HJ, Bickle MJ (2013) The silicon isotopic composition of the Ganges and its tributaries. Earth Planet Sci Lett 381:21–30

    CAS  Article  Google Scholar 

  23. Fouépé Takounjou A, Ndam Ngoupayou JR, Riotte J, Takem GE, Mafany G, Maréchal JC, Ekodeck GE (2011) Estimation of groundwater recharge of shallow aquifer on humid environment in Yaoundé, Cameroon using hybrid water fluctuation and hydrochemistry methods. Environ Earth Sci 64:107–118

    Article  Google Scholar 

  24. Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    CAS  Article  Google Scholar 

  25. Frings PJ, Clymans W, Conley DJ (2014) Amorphous silica transport in the Ganges basin: implications for Si delivery to the oceans. Proc Earth Planet Sci 10:271–274

    CAS  Article  Google Scholar 

  26. Frings PJ, Clymans W, Fontorbe G, Gray W, Chakrapani GJ, Conley DJ, De La Rocha CL (2015) Silicate weathering in the Ganges alluvial plain. Earth Planet Sci Lett 427:136–148

    CAS  Article  Google Scholar 

  27. Frings PJ, Clymans W, Fontorbe G, De La Rocha CL, Conley CL (2016) The continental Si cycle and its impact on the ocean Si isotope budget. Chem Geol 425:12–36

    CAS  Article  Google Scholar 

  28. Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    CAS  Article  Google Scholar 

  29. Georg RB, Reynolds BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet Sci Lett 249:290–306

    CAS  Article  Google Scholar 

  30. Georg RB, Reynolds BC, West AJ, Burton KW, Halliday AN (2007) Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet Sci Lett 261:476–490

    CAS  Article  Google Scholar 

  31. Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  32. Henriet C, Bodarwé L, Dorel M, Draye X, Delvaux B (2008) Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant Soil 313:71–82. https://doi.org/10.1007/s11104-008-9680-7

    CAS  Article  Google Scholar 

  33. Hughes HJ, Sondag F, Cocquyt C, Laraque A, Pandi A, André L, Cardinal D (2011) Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River. Limnol Oceanogr 56:551–561

    CAS  Article  Google Scholar 

  34. Irfan K, Trolard F, Shahzad T, Cary L, Mouret JC, Bourrié G (2017) Impact of 60 years of intensive rice cropping on clay minerals in soils due to Si exportation. American. J Agric For 5:40–48

    Google Scholar 

  35. Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen- the so-called ‘priming’ effect. Eur J Soil Sci 36:425–444

    CAS  Article  Google Scholar 

  36. Klotzbücher T, Leuther F, Marxen A, Vetterlein D, Horgan FG, Jahn R (2015) Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines). Plant Soil. https://doi.org/10.1007/s11104-015-2480-y

  37. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    CAS  Article  Google Scholar 

  38. Liang Y, Nikolic M, Belanger R, Haijun G, Song A (2015) Silicon in agriculture. From theory to practice. Springer, Dordrecht

    Google Scholar 

  39. Litchman E, Steiner D, Bossard P (2003) Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshw Biol 48:2141–2148

    CAS  Article  Google Scholar 

  40. Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163

    CAS  Article  Google Scholar 

  41. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam, 281p

    Google Scholar 

  42. Makabe S, Kakuda K, Sasaki Y, Ando T, Fujii H, Ando H (2009) Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai plain, Japan. Soil Sci Plant Nutr 55:300–308

    CAS  Article  Google Scholar 

  43. Maréchal JC, Murari RRV, Riotte J, Vouillamoz JM, Mohan Kumar MS, Ruiz L, Muddu S, Braun JJ (2009) Indirect and direct recharges in a tropical forested watershed: mule hole, India. J Hydrol 364:272–284

    Article  Google Scholar 

  44. Maréchal JC, Braun JJ, Riotte J, Bedimo Bedimo JP, Boeglin JL (2011a) Hydrological processes of a rainforest headwater swamp from natural chemical tracing in Nsimi watershed, Cameroon. Hydrol Process 25:2246–2260

    Article  Google Scholar 

  45. Maréchal JC, Riotte J, Lagane C, Subramanian S, Kumar C, Ruiz L, Audry S, Murari V, Braun JJ (2011b) Chemical groundwater outputs from a small drainage watershed: mule hole, South India. Appl Geochem 26:S94–S96

    Article  Google Scholar 

  46. Méheut M, Lazzeri M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory. Geochim Cosmochim Acta 71:3170–3181

    Article  Google Scholar 

  47. Meunier JD, Guntzer F, Kirman S, Keller C (2008) Terrestrial plant-Si and environmental changes. Min Mag 72:263–267

    CAS  Article  Google Scholar 

  48. Meunier JD, Riotte J, Braun JJ, Muddu S, Chalié F, Barboni D, Saccone L (2015) Controls of DSi in streams and reservoirs along the Kaveri River, South India. Sci Total Environ 502:103–113

    CAS  Article  PubMed  Google Scholar 

  49. Meunier JD, Barboni D, Anwar-ul-Haq M, Levard C, Chaurand P, Vidal V, Grauby O, Huc R, Laffont-Schwob I, Rabier J, Keller C (2017) Effect of phytoliths for mitigating water stress in durum wheat. New Phytol 215:229–239. https://doi.org/10.1111/nph.14554

    CAS  Article  PubMed  Google Scholar 

  50. Nguyen NM, Dultz S, Picardal F, Bui ATK, Pham QV, Dam TTN, Nguyen CX, Nguyen NT, Bui HT (2016) Simulation of silicon leaching from flooded rice paddy soils in the Red River Delta, Vietnam. Chemosphere 145:450–456

    CAS  Article  PubMed  Google Scholar 

  51. Opfergelt S, de Bournonville G, Cardinal D, André L, Delstanche S, Delvaux B (2009) Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon. Geochim Cosmochim Acta 73:7226–7240

    CAS  Article  Google Scholar 

  52. Opfergelt S, Eiriksdottir ES, Burton KW, Einarsson A, Siebert C, Gislason SR, Halliday AN (2011) Quantifying the impact of freshwater diatom productivity on silicon isotopes and silicon fluxes: Lake Myvatn, Iceland. Earth Planet Sci Lett 305:73–82

    CAS  Article  Google Scholar 

  53. Opfergelt S, Delmelle P (2012) Silicon isotopes and continental weathering processes: assessing controls on Si transfer to the ocean. Comptes Rendus Geoscience 344(11–12):723–738

  54. Pati S, Pal B, Badole S, Hazra GC, Mandal B (2016) Effect of silicon fertilization on growth, yield, and nutrient uptake of Rice. Commun Soil Sci Plant Anal 47:284–290

    CAS  Article  Google Scholar 

  55. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San Diego, 280 p

    Google Scholar 

  56. Reddy KC, Arunajyothy S, Mallikarjuna P (2015) Crop coefficients of some selected crops of Andhra Pradesh. J Inst Eng India Ser A 96:123–130

    CAS  Article  Google Scholar 

  57. Riotte J, Maréchal JC, Audry S, Kumar C, Bedimo JP, Ruiz L, Sekhar M, Cisel M, Chitra Tarak R, Varma MRR, Lagane C, Reddy P, Braun JJ (2014) Vegetation impact on stream chemical fluxes: mule hole watershed (South India). Geochim Cosmochim Acta 145:116–138

    CAS  Article  Google Scholar 

  58. Sandhya K (2016) Biogeochemistry of silicon in different rice ecosystems of Karnataka. Ph.D. Thesis, Univ. Agric. Sci., Bengaluru, Karnataka, India

  59. Savage PS, Georg RB, Williams HM, Turner S, Halliday AN, Chappell BW, (2012) The silicon isotope composition of granites. Geochimica et Cosmochimica Acta 92:184–202

  60. Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant available silicon in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28:1245–1252

    CAS  Article  Google Scholar 

  61. Schabhüttl S, Hingsamer P, Weigelhofer G, Hein T, Weigert A, Striebel M (2013) Temperature and species richness effects in phytoplankton communities. Oecologia 171:527–536. https://doi.org/10.1007/s00442-012-2419-4

    Article  PubMed  Google Scholar 

  62. Seyfferth AL, Kocar BD, Lee JA, Fendorf S (2013) Seasonal dynamics of dissolved silicon in a rice cropping system after straw incorporation. Geochim Cosmochim Acta 123:120–133

    CAS  Article  Google Scholar 

  63. Shah T (2014) Groundwater governance and irrigated agriculture. Stockholm, Sweden: global water partnership, technical committee (TEC). 71p. (TEC Background Papers 19). https://doi.org/10.1080/09614520701469427

  64. Siva Soumya B, Sekhar M, Riotte J, Banerjee A, Braun JJ (2013) Characterization of groundwater chemistry under the influence of lithologic and anthropogenic factors along a climatic gradient in upper Cauvery basin, South India. Env Earth Sci 69:2311–2335

    Article  Google Scholar 

  65. Sivapalan S (2015) Water balance of flooded Rice in the tropics, irrigation and drainage - sustainable strategies and systems, Muhammad Salik Javaid (Ed.), InTech 91–118. https://doi.org/10.5772/59043

  66. Struyf E, Smis A, Van Damme S, Garnier J, Govers G, Van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1:129

    Article  PubMed  Google Scholar 

  67. Sun L, Wu LH, Ding TP, Tian SH (2008) Silicon isotope fractionation in rice plants, an experimental study on rice growth under hydroponic conditions. Plant Soil 304:291–300. https://doi.org/10.1007/sl 11 04-008-9552-1

    CAS  Article  Google Scholar 

  68. Sun Y, Wu LH, Li X (2016) Experimental determination of silicon isotope fractionation in Rice. PLoS One 11(12):e0168970. https://doi.org/10.1371/journal.pone.0168970

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tsukada H, Takeda A (2008) Concentration of chlorine in rice plant components. J Radioanal Nucl Chem 278(2):387–390

  70. Tyagi NK, Sharma DK, Luthra SK (2000) Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter. Agric Water Manag 45:41–54

    Article  Google Scholar 

  71. Tyner JS, Brown GO, Vogel JR, Garbrecht J (2000) Chloride mass balance to determine water fluxes beneath kci-fertilized crops. Transactions of the ASAE 43(6):1553–1559

  72. Vandevenne FI, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front Ecol Environ 10:243–248. https://doi.org/10.1890/110046

    Article  Google Scholar 

  73. Vandevenne FI, Barão L, Ronchi B, Govers G, Meire P, Kelly EF, Struyf E (2015a) Silicon pools in human impacted soils of temperate zones. Glob Biogeochem Cycles 29:1439–1450. https://doi.org/10.1002/2014GB005049

    CAS  Article  Google Scholar 

  74. Vandevenne FI, Delvaux C, Hughes HJ, Benedicta André L, Ronchi B, Clymans W, Barão L, Cornelis J-T, Govers G, Meire P, Struyf E (2015b) Landscape cultivation alters δ30Si signature in terrestrial ecosystems. Sci Rep 5(1):7732. https://doi.org/10.1038/srep07732

  75. Zambardi T, Poitrasson F (2011) Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS. Geostand Geoanal Res 35:89–99

    CAS  Article  Google Scholar 

  76. Ziegler K, Chadwick OA, White AF, Brzezinski MA (2005) δ30Si systematics in a granitic saprolite, Puerto Rico. Geology 33:817–820

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR/CEFIPRA; Project n°5109-1) and by the French Institute for Research and Development (IRD, France) which funded the deputation of J. Riotte and the long duration stays of J.D. Meunier. The authors thank the two anonymous reviewers for their useful comments on the manuscript. Hemanth Moger and Jean-Louis Duprey are thanked for the chemical analyses, Jonathan Prunier and Manuel Henry for their support in clean room and the personnel of VC farm at Mandya for help during the rice cropping experiment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean Riotte.

Additional information

Responsible Editor: Yong Chao Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riotte, J., Sandhya, K., Prakash, N.B. et al. Origin of silica in rice plants and contribution of diatom Earth fertilization: insights from isotopic Si mass balance in a paddy field. Plant Soil 423, 481–501 (2018). https://doi.org/10.1007/s11104-017-3535-z

Download citation

Keywords

  • Rice
  • Silicon isotopes
  • Nutrients
  • Silica mass balance
  • Plant uptake
  • Tropics
  • South India