Skip to main content
Log in

Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Determining which abiotic and biotic factors influence soil aggregate stability (MWD) in tropical climates is often confounded by soil type. We aimed to better understand the influence of soil physical and chemical components, vegetation and fungal abundance on MWD of a Ferralsol along a successional gradient of vegetation in New Caledonia.

Methods

Five plant communities (sedge dominated, open sclerophyllous shrubland, Arillastrum forest, Nothofagus forest and mixed rainforest) were studied. For each community, MWD, soil texture, soil organic carbon (SOC), iron (Fe) and aluminium (Al) sesquioxides, root length density (RLD), specific root length (SRL), root mass density (RMD) and fungal abundance were measured. Generalized linear models were used to predict MWD from soil and plant trait data.

Results

The best prediction of MWD combined abiotic and biotic factors. Along the gradient, Fe increased MWD, while root traits, fungal abundance and SOC modified MWD. From the sedge-dominated community to Arillastrum forest, RMD and SOC increased MWD, while between Nothofagus and mixed rainforest, it was likely that floristic composition and fungal communities influenced MWD.

Conclusions

Plant community, the intrinsic nature of Ferralsol and fungal abundance all modified MWD. However, the specific effect of microbial communities should be addressed through a metagenomics approach to elucidate microbial interactions with plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhiza

ECM:

Ectomycorrhizal fungi

MWD:

Mean weight diameter

PCA:

Principal Component Analysis

qPCR:

Quantitative PCR

rDNA:

Ribosomal DNA

RLD:

Root length density

RMD:

Root mass density

SRL:

Specific root length

SLA:

Specific leaf area

SOC:

Soil organic carbon

References

  • Afnor (2005) NF X 31–515 - Mesure de la stabilité d'agrégats de sols pour l'évaluation de la sensibilité à la battance et à l'érosion hydrique. Afnor, France

    Google Scholar 

  • Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151. https://doi.org/10.1300/J064v14n02_08

    Article  Google Scholar 

  • Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. In Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC Editions edn. pp 129–146: New Caledonia

  • Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72

    Article  Google Scholar 

  • Barthès B, Roose E (2002) Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133–149

    Article  Google Scholar 

  • Barton K (2016) {MuMIn}: multi-model inference, {R} package version 1.15.6

  • Braun-Blanquet J, Fuller G, Conard H, (1932) Plant sociology; the study of plant communities. McGraw-Hill Book Company Inc. edn

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland, Oregon

    Google Scholar 

  • Burri K, Graf F, Böll A (2009) Revegetation measures improve soil aggregate stability: a case study of a landslide area in Central Switzerland. For Snow Landsc Res 82:45–60

    Google Scholar 

  • Chemidlin Prévost-Bouré N, Christen R, Dequiedt S, Mougel C, Leliévre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6(9):e24166. https://doi.org/10.1371/journal.pone.0024166

    Article  PubMed  PubMed Central  Google Scholar 

  • Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134:88–119

    Article  Google Scholar 

  • Dalal RC, Bridge BJ (1996) Aggregation and organic matter storage in sub-humid and semiarid soils. M. R. Carter and B. A. Stewart, Boca Raton, pp 263–307

    Google Scholar 

  • Demenois J, Carriconde F, Bonaventure P, Maeght J-L, Stokes A, Rey F (2018) Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol. Geoderma 312:6–16. https://doi.org/10.1016/j.geoderma.2017.09.033

    Article  Google Scholar 

  • Demenois J, Carriconde F, Rey F, Stokes A (2017a) Tropical plant communities modifiy soil aggregate stability along a successional vegetation gradient on a Ferralsol. Ecol Eng 109:161–168. https://doi.org/10.1016/j.ecoleng.2017.07.027

    Article  Google Scholar 

  • Demenois J, Ibanez T, Read DJ, Carriconde F (2017b) Comparison of two monodominant species in New Caledonia: floristic diversity and ecological strategies of Arillastrum gummiferum (Myrtaceae) and Nothofagus aequilateralis (Nothofagaceae) rainforests. Aust J Bot 65:11–21. https://doi.org/10.1071/BT16125

    Article  Google Scholar 

  • Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233

    Article  PubMed  Google Scholar 

  • Dugain F (1953) Premières observations sur l'érosion en Nouvelle-Calédonie. L'Agronomie Tropicale VIII: 466–475

  • Eisenhauer N, Beßler H et al (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Leff JW et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourmelon V, Maggia L, Powell JR, Gigante S, Hortal S, Gueunier C, Letellier K, Carriconde F (2016) Environmental and geographical factors structure soil microbial diversity in New Caledonian ultramafic substrates: a metagenomic approach. PLoS One 11:e0167405. https://doi.org/10.1371/journal.pone.0167405

    Article  PubMed  PubMed Central  Google Scholar 

  • Graf F, Frei M (2013) Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecol Eng 57:314–323. https://doi.org/10.1016/j.ecoleng.2013.04.037

    Article  Google Scholar 

  • Grueber CE, Nakagawa R, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. https://doi.org/10.1111/j.1420-9101.2010.02210.x

    Article  CAS  PubMed  Google Scholar 

  • Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9:95–98

    Article  CAS  Google Scholar 

  • Gyssels G, Poesen J et al (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29:189–217

    Article  Google Scholar 

  • Harrison S, Rajakaruna N (2011) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Isnard S, L’huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant Soil 403:53–76. https://doi.org/10.1007/s11104-016-2910-5

    Article  CAS  Google Scholar 

  • Jaffré T (1970) Les groupements végétaux des sols miniers de basse altitude du Sud de la Nouvelle-Calédonie. ORSTOM, New Caledonia

    Google Scholar 

  • Jastrow JD, Miller RM, Lussenhopet J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30(7):905–916

    Article  CAS  Google Scholar 

  • Kohler J, Roldán A et al (2016) Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant Soil 410(1):273–281

    Google Scholar 

  • Kruskal JB (1964) Non metric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • L'Huillier L, Jaffré T, Wulff A (2010) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration., New Caledonia

  • Le Bissonnais Y, Arrouays D (1997) Aggregate stability and assessment of soil crustability and erodibility: II: application to humic loamy soils with various organic carbon contents. Eur J Soil Sci 48:39–48

    Article  Google Scholar 

  • Le Bissonnais Y (1988) Comportement d'agrégats terreux soumis à l'action de l'eau: analyse des mécanismes de désagrégation. Agronomie 8:915–924

    Article  Google Scholar 

  • Le Bissonnais Y (1996) Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology. Eur J Soil Sci 47:425–437

    Article  Google Scholar 

  • Le Bissonnais Y, Prieto I, Roumet C, Nespoulous J, Metayer J, Huon S, Villatoro M, Stokes A (2017, in press) Soil aggregate stability in a range of agro-ecosystems and climates: effect of plant roots versus soil characteristics. Plant Soil doi:https://doi.org/10.1007/s11104-017-3423-6

  • Losfeld G, L'Huillier L, Fogliani B, Jaffré T, Grison C (2015) Mining in New Caledonia: environmental stakes and restoration opportunities. Environ Sci Pollut Res 22(8):5592–5607

    Article  Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. Adv Soil Sci 2:133–171

    Article  Google Scholar 

  • Martins MR, Corá JE, Jorge RF, Marcelo AV (2009) Crop type influences soil aggregation and organic matter under no-tillage. Soil Tillage Res 104:22–29

    Article  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari H-S, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518. https://doi.org/10.1111/nph.13363

    Article  PubMed  Google Scholar 

  • McCoy S, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramafic maquis of New Caledonia. J Biogeogr 26:579–594. https://doi.org/10.1046/j.1365-2699.1999.00309.x

    Article  Google Scholar 

  • Mehra OP (1958) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327

    Article  Google Scholar 

  • Météo France (2016a) www.meteo.nc/en-savoir-plus/accueil/actualites/472-bilan-meteorologique-de-l-episode-pluvieux-de-grande-echelle-du-20-au-22-novembre-2016

  • Météo France (2016b) www.meteofrance.com/climat/outremer/noumea/98818001/normales

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon JM, Chalopin M (2012) The taxonomic database «FLORICAL» and characteristics of the indigenous flora of New Caledonia. Adansonia 34(2):177–219

    Article  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil:319–337

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • O'Dell RE, Claassen VP (2011) Restoration and revegetation of harsh soils. In: Harrison S, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Oades J, Waters A (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828. https://doi.org/10.1071/sr9910815

    Article  Google Scholar 

  • Papineau C (1989) Le chêne-gomme (Arillastrum gummiferum) en Nouvelle-Calédonie. ENITEF, Nancy

  • Pérès G, Cluzeau D et al (2013) Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373:285–299

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Pierret A, Gonkhamdee S, Jourdan C, Maeght J-L (2013) IJ_Rhizo: an open-source software to measure scanned images of root samples. Plant Soil 373:531–539. https://doi.org/10.1007/s11104-013-1795-9

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Raidl S, Bonfigli R, Agerer R (2005) Calibration of quantitative real-time Taqman PCR by correlation with hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biol 7:713–717

    Article  CAS  PubMed  Google Scholar 

  • Read J, Hope GS (1996) Ecology of Nothofagus forests of New Guinea and New Caledonia. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. University of Yale Press, New Haven

    Google Scholar 

  • Read J, Jaffré T (2013) Population dynamics of canopy trees in New Caledonian rain forests: are monodominant Nothofagus (Nothofagaceae) forests successional to mixed rain forests? J Trop Ecol 29:485–499. https://doi.org/10.1017/s0266467413000576

    Article  Google Scholar 

  • Read J, Jaffré T, Ferris JM, Mc Coy S, Hope GS (2006) Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? J Biogeogr 33:1055–1065

    Article  Google Scholar 

  • Reinhart KO, Nichols KA, Petersen M, Vermeire LT (2015) Soil aggregate stability was an uncertain predictor of ecosystem functioning in a temperate and semiarid grassland. Ecosphere 6:238. https://doi.org/10.1890/ES15-00056.1

    Article  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Sebert H (1874). Notice sur les bois de la Nouvelle-Calédonie, leur nature, leur exploitation et leurs propriétés mécaniques et industrielles. pp 280

  • Sourkova M, Frouz J et al (2005) Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 129:73–80

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. Eur J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 8:927–936

    Article  Google Scholar 

  • van der Ent A, Rajakaruna N, Boyd R, Echevarria G, Repin R, Williams D (2015) Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia): a summary and synthesis. Aust J Bot 63:1–16

    Google Scholar 

  • Virot R (1956) La végétation Canaque. (Museum National d’Histoire Naturelle)

  • Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, Björk RG, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Plassard C, Rudawska M (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – A review. Soil Biol Biochem 57:1034–1047. https://doi.org/10.1016/j.soilbio.2012.08.027

    Article  CAS  Google Scholar 

  • Wang X, Yost RS, Linquistet BA (2001) Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Sci Soc Am J 65:139–146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the field staff of IAC (‘Unité SARA’): A. Bouarat, R. Guiglion, J.P. Lataï and A. Pain for their substantial assistance. We are thankful to our colleagues at IAC who gave substantial help for qPCR analyses: M. Lelièvre, K. Letellier, N. Robert, J. Soewarto and S. Gigante. We thank the US191 LAMA at IRD Nouméa who carried out the sesquioxides measurements. Fieldwork and laboratory analyses were funded by INRA, IAC and through a collaboration agreement between IAC and Société Le Nickel (agreement IAC-SLN n°DE2013-041). We thank the French Ministry of Agriculture for funding a PhD bursary (J. Demenois). Finally, we thank the anonymous reviewers for their helpful comments on the manuscript. In memoriam: we dedicate this paper to Christian Papineau who spent a large part of his life studying Arillastrum forests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Demenois.

Additional information

Responsible Editor: Michael Luke McCormack.

Electronic supplementary material

Supplementary Fig. 1

Types of plant communities along the successional vegetation gradient from shrubland to forest. Retrocessions due to disturbances are not shown. (GIF 89 kb)

High resolution image (TIFF 9522 kb)

Supplementary Fig. 2

Non-metric dimensional scaling (NMDS) performed on Bray-Curtis dissimilarity indices for the five plant communities. S is Sedge-dominated formation; Mq is shrubland with Tristaniopsis glauca; Ag is Arillastrum forest; Na is Nothofagus forest and M is mixed rainforest. (GIF 17 kb)

High resolution image (TIFF 6181 kb)

Supplementary Fig. 3

Spearman correlations between soil characteristics, root traits and fungal biomass. *** indicates correlations with P < 0.001 for ρ > 0.7. The size of the circle is proportional to ρ. Abbreviations are: Fe2O3: Fe sesquioxides; Al2O3: Al sesquioxides; SOC: soil organic carbon; RLD: root length density; RMD: root mass density; SRL: specific root length; FR: % of fine roots, VFR: % of very fine roots. (GIF 63 kb)

High resolution image (TIFF 11360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demenois, J., Rey, F., Ibanez, T. et al. Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient. Plant Soil 424, 319–334 (2018). https://doi.org/10.1007/s11104-017-3529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3529-x

Keywords

Navigation