Plant and Soil

, Volume 424, Issue 1–2, pp 187–202 | Cite as

Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs

  • Germain MontazeaudEmail author
  • Cyrille Violle
  • Hélène Fréville
  • Delphine Luquet
  • Nourollah Ahmadi
  • Brigitte Courtois
  • Ilyas Bouhaba
  • Florian Fort
Regular Article



Genotypic mixtures have been receiving a growing interest as genetic diversity could increase crop productivity. Resource-use complementarity is an expected key underlying mechanism, provided that varieties in the mixture differ in resource-related traits, notably root traits. We aimed at examining how trait differences and resource-use complementarity drive biomass production of genotypic mixtures.


Four rice (Oryza sativa) genotypes including two Near-Isogenic Lines only differing in root depth were grown in monoculture and in two-way mixtures in pots under two levels of phosphorus supply. We analyzed the relative difference between mixture biomass and the best monoculture biomass in relation to between-genotype phenotypic distance on ten resource-related traits.


Mixtures never outperformed the best monoculture. However, relative mixture productivity increased with increasing between-genotype distance in biovolume, specific leaf area and top soil root biomass. This was mainly driven by a “selection effect”: trait differences led to competitive ability differences and the dominant genotypes tended to gain more in mixture than the subdominant genotypes lost compared to monoculture.


Rather than trying to minimize competition through resource-use complementarity, we argue that promoting interactions between genotypes that have different competitive abilities may be a more promising approach to design productive crop mixtures.


Crop mixture Functional diversity Near-isogenic lines Resource-use complementarity Rice Root traits Selection effect 



This work was funded by the European Research Council (ERC) Starting Grant Project “Ecophysiological and biophysical constraints on domestication in crop plants” (Grant ERC-StG-2014-639706-CONSTRAINTS). We thank Clemence Darley for her dedicated technical help and the ‘Terrain d’expériences’ and ‘PACE’ platforms at CEFE (technical facilities of the Labex Centre Méditerranéen de l’Environnement et de la Biodiversite, CEMEB) for providing all the facilities and technical support.

Supplementary material

11104_2017_3496_MOESM1_ESM.docx (136 kb)
ESM 1 (DOCX 135 kb)


  1. Anten NPR, Vermeulen PJ (2016) Tragedies and crops: understanding natural selection to improve cropping systems. Trends Ecol Evol 31:429–439CrossRefPubMedGoogle Scholar
  2. Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata J-C, Roux XL, Niboyet A, Porcher E (2017) Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron Sustain Dev 37:13CrossRefGoogle Scholar
  3. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193CrossRefPubMedGoogle Scholar
  4. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67CrossRefPubMedGoogle Scholar
  5. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  6. Chesson (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366CrossRefGoogle Scholar
  7. Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:064016CrossRefGoogle Scholar
  8. Core Team R (2017) R: a language and environment for statistical computing. R Found. Stat, ComputGoogle Scholar
  9. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MG a et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J Bot 51:335Google Scholar
  10. Costanzo A, Bàrberi P (2014) Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron Sustain Dev 34:327–348CrossRefGoogle Scholar
  11. Coudert Y, Périn C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226CrossRefPubMedGoogle Scholar
  12. Craven D, Isbell, F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B et al (2016) Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos Trans R Soc B Biol Sci 371Google Scholar
  13. Dimitrakopoulos PG, Schmid B (2004) Biodiversity effects increase linearly with biotope space. Ecol Lett 7:574–583CrossRefGoogle Scholar
  14. E Z-G, Ge L, Wang L (2012) Molecular mechanism of adventitious root formation in rice. Plant Growth Regul 68:325–331CrossRefGoogle Scholar
  15. Fargione J, Tilman D (2005) Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143:598–606CrossRefPubMedGoogle Scholar
  16. Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, de Vallavieille-Pope C et al (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837CrossRefGoogle Scholar
  17. Fort F, Cruz P, Jouany C (2014) Hierarchy of root functional trait values and plasticity drive early-stage competition for water and phosphorus among grasses. Funct Ecol 28:1030–1040CrossRefGoogle Scholar
  18. Garnier E, Navas M-L, Grigulis K (2015) Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press, OxfordCrossRefGoogle Scholar
  19. Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243CrossRefGoogle Scholar
  20. Goldberg DE (1996) Competitive ability: definitions, contingency and correlated traits. Philos Trans Biol Sci 351:1377–1385CrossRefGoogle Scholar
  21. Grassein F, Lemauviel-Lavenant S, Lavorel S, Bahn M, Bardgett RD, Desclos-Theveniau M, Laîné P (2015) Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species. Ann Bot 115:107–115CrossRefPubMedGoogle Scholar
  22. Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123:261–270CrossRefGoogle Scholar
  23. Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 446:791–793CrossRefPubMedGoogle Scholar
  24. He J-S, Bazzaz FA, Schmid B (2002) Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities. Oikos 97:337–348CrossRefGoogle Scholar
  25. Hooper DU, Dukes JS (2004) Overyielding among plant functional groups in a long-term experiment. Ecol Lett 7:95–105CrossRefGoogle Scholar
  26. Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623CrossRefPubMedGoogle Scholar
  27. Hutchinson GE (1957) The multivariate niche. Cold Spring Harbor Symposia on Quantitative Biology, In, pp 415–421Google Scholar
  28. Isbell F (2015) Agroecology: agroecosystem diversification. Nat Plants 1:15041CrossRefPubMedGoogle Scholar
  29. Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570CrossRefPubMedGoogle Scholar
  30. Jucker T, Coomes DA (2012) Comment on “plant species richness and ecosystem multifunctionality in global drylands”. Science 337:155–155CrossRefPubMedGoogle Scholar
  31. Kato Y, Okami M (2010) Root growth dynamics and stomatal behaviour of rice (Oryza Sativa L.) grown under aerobic and flooded conditions. Field Crop Res. 117:9–17CrossRefGoogle Scholar
  32. Kiær LP, Skovgaard IM, Østergård H (2009) Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crop Res 114:361–373CrossRefGoogle Scholar
  33. Knott EA, Mundt CC (1990) Mixing ability analysis of wheat cultivar mixtures under diseased and nondiseased conditions. Theor Appl Genet 80:313–320CrossRefPubMedGoogle Scholar
  34. Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1299–1310CrossRefGoogle Scholar
  35. Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol Lett 15:831–840CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103CrossRefPubMedGoogle Scholar
  37. Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–257CrossRefPubMedGoogle Scholar
  38. Litrico I, Violle C (2015) Diversity in plant breeding: a new conceptual framework. Trends Plant Sci 20:604–613CrossRefPubMedGoogle Scholar
  39. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76CrossRefPubMedGoogle Scholar
  40. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808CrossRefPubMedGoogle Scholar
  41. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512CrossRefGoogle Scholar
  42. Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  43. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205CrossRefGoogle Scholar
  44. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093CrossRefPubMedGoogle Scholar
  45. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185CrossRefPubMedGoogle Scholar
  46. Mommer, L., Visser, E.J.W., Ruijven, J. van, Caluwe, H. de, Pierik, R., and Kroon, H. de (2011). Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant Soil 344, 347Google Scholar
  47. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:7–14CrossRefPubMedGoogle Scholar
  48. Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406CrossRefPubMedGoogle Scholar
  49. Niklaus PA, Baruffol M, He J-S, Ma K, Schmid B (2017) Can niche plasticity promote biodiversity–productivity relationships through increased complementarity? Ecology 98:1104–1116CrossRefPubMedGoogle Scholar
  50. Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (United States department of agriculture; Washington)Google Scholar
  51. Østergård H, Finckh MR, Fontaine L, Goldringer I, Hoad SP, Kristensen K, Lammerts van Bueren ET, Mascher F, Munk L, Wolfe MS (2009) Time for a shift in crop production: embracing complexity through diversity at all levels. J Sci Food Agric 89:1439–1445CrossRefGoogle Scholar
  52. Parrish JAD, Bazzaz FA (1976) Underground niche separation in successional plants. Ecology 57:1281–1288CrossRefGoogle Scholar
  53. Postma JA, Lynch JP (2012) Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann Bot 110:521–534CrossRefPubMedPubMedCentralGoogle Scholar
  54. Prieto I, Violle C, Barre P, Durand J-L, Ghesquiere M, Litrico I (2015) Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1:15033. CrossRefPubMedGoogle Scholar
  55. Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D et al (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810CrossRefPubMedGoogle Scholar
  56. Roughgarden J (1974) Niche width: biogeographic patterns among Anolis lizard populations. Am Nat 108:429–442CrossRefGoogle Scholar
  57. Schmid B, Niklaus PA (2017) Biodiversity: complementary canopies. Nat. Ecol. Evol. 1:0104Google Scholar
  58. Schoener TW, Gorman GC (1968) Some niche differences in three lesser Antillean lizards of the genus Anolis. Ecology 49:819–830CrossRefGoogle Scholar
  59. Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland biomass dynamics measurements. Glob Change Biol 8:736–753CrossRefGoogle Scholar
  60. Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83CrossRefGoogle Scholar
  61. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611CrossRefGoogle Scholar
  62. Smithson JB, Lenné JM (1996) Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann Appl Biol 128:127–158CrossRefGoogle Scholar
  63. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845CrossRefPubMedGoogle Scholar
  64. Tooker JF, Frank SD (2012) Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J Appl Ecol 49:974–985CrossRefGoogle Scholar
  65. Turnbull LA, Isbell F, Purves DW, Loreau M, Hector A (2016) Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc R Soc B 283:20160536CrossRefPubMedPubMedCentralGoogle Scholar
  66. Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390CrossRefGoogle Scholar
  67. Vejchasarn P, Lynch JP, Brown KM (2016) Genetic variability in phosphorus responses of Rice root phenotypes. Rice 9:29CrossRefPubMedPubMedCentralGoogle Scholar
  68. Violle C, Jiang L (2009) Towards a trait-based quantification of species niche. J Plant Ecol 2:87–93CrossRefGoogle Scholar
  69. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional. Oikos 116:882–892CrossRefGoogle Scholar
  70. Violle C, Garnier E, Lecoeur J, Roumet C, Podeur C, Blanchard A, Navas M-L (2009) Competition, traits and resource depletion in plant communities. Oecologia 160:747–755CrossRefPubMedGoogle Scholar
  71. Wagg C, Ebeling A, Roscher C, Ravenek J, Bachmann D, Eisenhauer N, Mommer L, Buchmann N, Hillebrand H, Schmid B et al (2017) Functional trait dissimilarity drives both species complementarity and competitive disparity. Funct Ecol.
  72. Weigelt A, Jolliffe P (2003) Indices of plant competition. J Ecol 91:707–720CrossRefGoogle Scholar
  73. Williams, L.J., Paquette, A., Cavender-Bares, J., Messier, C., and Reich, P.B. (2017). Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat Ecol Evol 1, 0063Google Scholar
  74. Yadav R, Courtois B, Huang N, McLaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94:619–632CrossRefGoogle Scholar
  75. Yoshida S, Hasegawa S (1982) The rice root system: its development and function. In: Drought resistance in crops with emphasis on rice. Int. Rice Res. Inst., Los BañosGoogle Scholar
  76. Zeller SL, Kalinina O, Flynn DFB, Schmid B (2012) Mixtures of genetically modified wheat lines outperform monocultures. Ecol Appl 22:1817–1826CrossRefPubMedGoogle Scholar
  77. Zhu, G., Peng, S., Huang, J., Cui, K., Nie, L., and Wang, F. (2016). Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River. Sci. Rep. 6, srep21049Google Scholar
  78. Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DFB (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–111CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Germain Montazeaud
    • 1
    • 2
    Email author
  • Cyrille Violle
    • 3
  • Hélène Fréville
    • 4
  • Delphine Luquet
    • 5
  • Nourollah Ahmadi
    • 5
  • Brigitte Courtois
    • 5
  • Ilyas Bouhaba
    • 3
  • Florian Fort
    • 1
  1. 1.CEFE, Montpellier SupAgro, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRDMontpellierFrance
  2. 2.AGAP, Montpellier SupAgro, INRA, CIRAD, Université de MontpellierMontpellierFrance
  3. 3.CEFE, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRDMontpellierFrance
  4. 4.AGAP, INRA, CIRAD, Montpellier SupAgro, Université de MontpellierMontpellierFrance
  5. 5.AGAP, CIRAD, INRA, Montpellier SupAgro, Université de MontpellierMontpellierFrance

Personalised recommendations