Skip to main content
Log in

Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Genotypic mixtures have been receiving a growing interest as genetic diversity could increase crop productivity. Resource-use complementarity is an expected key underlying mechanism, provided that varieties in the mixture differ in resource-related traits, notably root traits. We aimed at examining how trait differences and resource-use complementarity drive biomass production of genotypic mixtures.

Methods

Four rice (Oryza sativa) genotypes including two Near-Isogenic Lines only differing in root depth were grown in monoculture and in two-way mixtures in pots under two levels of phosphorus supply. We analyzed the relative difference between mixture biomass and the best monoculture biomass in relation to between-genotype phenotypic distance on ten resource-related traits.

Results

Mixtures never outperformed the best monoculture. However, relative mixture productivity increased with increasing between-genotype distance in biovolume, specific leaf area and top soil root biomass. This was mainly driven by a “selection effect”: trait differences led to competitive ability differences and the dominant genotypes tended to gain more in mixture than the subdominant genotypes lost compared to monoculture.

Conclusions

Rather than trying to minimize competition through resource-use complementarity, we argue that promoting interactions between genotypes that have different competitive abilities may be a more promising approach to design productive crop mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anten NPR, Vermeulen PJ (2016) Tragedies and crops: understanding natural selection to improve cropping systems. Trends Ecol Evol 31:429–439

    Article  PubMed  Google Scholar 

  • Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata J-C, Roux XL, Niboyet A, Porcher E (2017) Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron Sustain Dev 37:13

    Article  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chesson (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:064016

    Article  Google Scholar 

  • Core Team R (2017) R: a language and environment for statistical computing. R Found. Stat, Comput

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MG a et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J Bot 51:335

    Google Scholar 

  • Costanzo A, Bàrberi P (2014) Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron Sustain Dev 34:327–348

    Article  Google Scholar 

  • Coudert Y, Périn C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226

    Article  CAS  PubMed  Google Scholar 

  • Craven D, Isbell, F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B et al (2016) Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos Trans R Soc B Biol Sci 371

  • Dimitrakopoulos PG, Schmid B (2004) Biodiversity effects increase linearly with biotope space. Ecol Lett 7:574–583

    Article  Google Scholar 

  • E Z-G, Ge L, Wang L (2012) Molecular mechanism of adventitious root formation in rice. Plant Growth Regul 68:325–331

    Article  CAS  Google Scholar 

  • Fargione J, Tilman D (2005) Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143:598–606

    Article  PubMed  Google Scholar 

  • Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, de Vallavieille-Pope C et al (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837

    Article  Google Scholar 

  • Fort F, Cruz P, Jouany C (2014) Hierarchy of root functional trait values and plasticity drive early-stage competition for water and phosphorus among grasses. Funct Ecol 28:1030–1040

    Article  Google Scholar 

  • Garnier E, Navas M-L, Grigulis K (2015) Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243

    Article  Google Scholar 

  • Goldberg DE (1996) Competitive ability: definitions, contingency and correlated traits. Philos Trans Biol Sci 351:1377–1385

    Article  Google Scholar 

  • Grassein F, Lemauviel-Lavenant S, Lavorel S, Bahn M, Bardgett RD, Desclos-Theveniau M, Laîné P (2015) Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species. Ann Bot 115:107–115

    Article  CAS  PubMed  Google Scholar 

  • Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123:261–270

    Article  Google Scholar 

  • Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 446:791–793

    Article  CAS  PubMed  Google Scholar 

  • He J-S, Bazzaz FA, Schmid B (2002) Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities. Oikos 97:337–348

    Article  CAS  Google Scholar 

  • Hooper DU, Dukes JS (2004) Overyielding among plant functional groups in a long-term experiment. Ecol Lett 7:95–105

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1957) The multivariate niche. Cold Spring Harbor Symposia on Quantitative Biology, In, pp 415–421

    Google Scholar 

  • Isbell F (2015) Agroecology: agroecosystem diversification. Nat Plants 1:15041

    Article  PubMed  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  CAS  PubMed  Google Scholar 

  • Jucker T, Coomes DA (2012) Comment on “plant species richness and ecosystem multifunctionality in global drylands”. Science 337:155–155

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Okami M (2010) Root growth dynamics and stomatal behaviour of rice (Oryza Sativa L.) grown under aerobic and flooded conditions. Field Crop Res. 117:9–17

    Article  Google Scholar 

  • Kiær LP, Skovgaard IM, Østergård H (2009) Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crop Res 114:361–373

    Article  Google Scholar 

  • Knott EA, Mundt CC (1990) Mixing ability analysis of wheat cultivar mixtures under diseased and nondiseased conditions. Theor Appl Genet 80:313–320

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1299–1310

    Article  Google Scholar 

  • Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol Lett 15:831–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–257

    Article  CAS  PubMed  Google Scholar 

  • Litrico I, Violle C (2015) Diversity in plant breeding: a new conceptual framework. Trends Plant Sci 20:604–613

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Mommer, L., Visser, E.J.W., Ruijven, J. van, Caluwe, H. de, Pierik, R., and Kroon, H. de (2011). Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant Soil 344, 347

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:7–14

    Article  PubMed  Google Scholar 

  • Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Niklaus PA, Baruffol M, He J-S, Ma K, Schmid B (2017) Can niche plasticity promote biodiversity–productivity relationships through increased complementarity? Ecology 98:1104–1116

    Article  PubMed  Google Scholar 

  • Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (United States department of agriculture; Washington)

    Google Scholar 

  • Østergård H, Finckh MR, Fontaine L, Goldringer I, Hoad SP, Kristensen K, Lammerts van Bueren ET, Mascher F, Munk L, Wolfe MS (2009) Time for a shift in crop production: embracing complexity through diversity at all levels. J Sci Food Agric 89:1439–1445

    Article  Google Scholar 

  • Parrish JAD, Bazzaz FA (1976) Underground niche separation in successional plants. Ecology 57:1281–1288

    Article  Google Scholar 

  • Postma JA, Lynch JP (2012) Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann Bot 110:521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto I, Violle C, Barre P, Durand J-L, Ghesquiere M, Litrico I (2015) Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1:15033. https://doi.org/10.1038/nplants.2015.33

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D et al (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810

    Article  CAS  PubMed  Google Scholar 

  • Roughgarden J (1974) Niche width: biogeographic patterns among Anolis lizard populations. Am Nat 108:429–442

    Article  Google Scholar 

  • Schmid B, Niklaus PA (2017) Biodiversity: complementary canopies. Nat. Ecol. Evol. 1:0104

    Google Scholar 

  • Schoener TW, Gorman GC (1968) Some niche differences in three lesser Antillean lizards of the genus Anolis. Ecology 49:819–830

    Article  Google Scholar 

  • Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland biomass dynamics measurements. Glob Change Biol 8:736–753

    Article  Google Scholar 

  • Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83

    Article  CAS  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Smithson JB, Lenné JM (1996) Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann Appl Biol 128:127–158

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tooker JF, Frank SD (2012) Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J Appl Ecol 49:974–985

    Article  Google Scholar 

  • Turnbull LA, Isbell F, Purves DW, Loreau M, Hector A (2016) Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc R Soc B 283:20160536

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390

    Article  Google Scholar 

  • Vejchasarn P, Lynch JP, Brown KM (2016) Genetic variability in phosphorus responses of Rice root phenotypes. Rice 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Violle C, Jiang L (2009) Towards a trait-based quantification of species niche. J Plant Ecol 2:87–93

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional. Oikos 116:882–892

    Article  Google Scholar 

  • Violle C, Garnier E, Lecoeur J, Roumet C, Podeur C, Blanchard A, Navas M-L (2009) Competition, traits and resource depletion in plant communities. Oecologia 160:747–755

    Article  PubMed  Google Scholar 

  • Wagg C, Ebeling A, Roscher C, Ravenek J, Bachmann D, Eisenhauer N, Mommer L, Buchmann N, Hillebrand H, Schmid B et al (2017) Functional trait dissimilarity drives both species complementarity and competitive disparity. Funct Ecol. https://doi.org/10.1111/1365-2435.12945

  • Weigelt A, Jolliffe P (2003) Indices of plant competition. J Ecol 91:707–720

    Article  Google Scholar 

  • Williams, L.J., Paquette, A., Cavender-Bares, J., Messier, C., and Reich, P.B. (2017). Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat Ecol Evol 1, 0063

  • Yadav R, Courtois B, Huang N, McLaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94:619–632

    Article  CAS  Google Scholar 

  • Yoshida S, Hasegawa S (1982) The rice root system: its development and function. In: Drought resistance in crops with emphasis on rice. Int. Rice Res. Inst., Los Baños

  • Zeller SL, Kalinina O, Flynn DFB, Schmid B (2012) Mixtures of genetically modified wheat lines outperform monocultures. Ecol Appl 22:1817–1826

    Article  PubMed  Google Scholar 

  • Zhu, G., Peng, S., Huang, J., Cui, K., Nie, L., and Wang, F. (2016). Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River. Sci. Rep. 6, srep21049

  • Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DFB (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Research Council (ERC) Starting Grant Project “Ecophysiological and biophysical constraints on domestication in crop plants” (Grant ERC-StG-2014-639706-CONSTRAINTS). We thank Clemence Darley for her dedicated technical help and the ‘Terrain d’expériences’ and ‘PACE’ platforms at CEFE (technical facilities of the Labex Centre Méditerranéen de l’Environnement et de la Biodiversite, CEMEB) for providing all the facilities and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germain Montazeaud.

Additional information

Responsible Editor: Hans Lambers

Electronic supplementary material

ESM 1

(DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeaud, G., Violle, C., Fréville, H. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 187–202 (2018). https://doi.org/10.1007/s11104-017-3496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3496-2

Keywords

Navigation