Skip to main content
Log in

An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM).

Methods

We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm−3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference).

Results

Good recoveries of soil mass (96%), OC and TN (both ~ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P.

Conclusions

The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blaser P, Zimmermann S, Luster J, Walthert L, Lüscher P (2005) Waldböden der Schweiz Vol 2. Hep Verlag, Bern 920 pp

    Google Scholar 

  • Cerli C, Celi L, Kalbitz K, Guggenberger G, Kaiser K (2012) Separation of light and heavy organic matter fractions in soil - testing for proper density cut-off and dispersion level. Geoderma 170:403–416

    Article  CAS  Google Scholar 

  • Collins MJ, Bishop AN, Farrimond P (1995) Sorption by mineral surfaces - rebirth of the classical condensation pathway for kerogen formation. Geochim Cosmochim Acta 59:2387–2391

    Article  CAS  Google Scholar 

  • Crow SE, Swanston CW, Lajtha K, Brooks JR, Keirstead H (2007) Stabilization and destabilization of soil organic matter: a new focus. Biogeochemistry 85:69–90

    Article  Google Scholar 

  • Emmett BA, Frogbrook ZL, Chamberlain PM, Griffiths R, Pickup R, Poskitt J, Reynolds B, Rowe E, Rowland P, Spurgeon D, Wilson J. & Wood CM (2008) Countryside survey soils manual. Countryside survey technical report no. 04/07, Centre for Ecology & Hydrology, Wallingford

  • Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust J Soil Res 32:285–309

    Article  CAS  Google Scholar 

  • Gustafsson JP (2003) Modelling molybdate and tungstate adsorption to ferrihydrite. Chem Geol 200:105–115

    Article  CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in the inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Johnson K, Purvis G, Lopez-Capel E, Peacock C, Gray N, Wagner T, März C, Bowen L, Ojeda J, Finlay N, Robertson S, Worrall F, Greenwell C (2016) Towards a mechanistic understanding of carbon stabilization in manganese oxides. Nature Comm 6:7628. https://doi.org/10.1038/ncomms8628

    Article  CAS  Google Scholar 

  • Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma 163:197–208

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Article  CAS  Google Scholar 

  • Makarov MI, Haumaier L, Zech W, Malysheva TI (2004) Organic phosphorus compounds in particle-size fractions of mountain soils in the northwestern Caucasus. Geoderma 118:101–114

    Article  CAS  Google Scholar 

  • McLaren TI, Smernik RJ, McLaughlin MJ, McBeath TM, Kirby JK, Simpson RJ, Guppy CN, Doolette AL, Richardson AE (2015a) Complex forms of soil organic phosphorus−a major component of soil phosphorus. Environ Sci Technol 49:13238–13245

    Article  PubMed  CAS  Google Scholar 

  • McLaren TI, Simpson RJ, McLaughlin MJ, Smernik RJ, McBeath TM, Guppy CN, Richardson AE (2015b) An assessment of various measures of soil phosphorus and the net accumulation of phosphorus in fertilized soils under pasture. J Plant Nutr Soil Sci 178:543–554

    Article  CAS  Google Scholar 

  • O’Hara CP, Bauhus J, Smethurst PJ (2006) Role of light fraction soil organic matter in the phosphorus nutrition of Eucalyptus globulus seedlings. Plant Soil 280:127–134

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: part 2. Chemical and microbiological properties. Agron. Mongr. 9, 2nd edn. ASA and SSSA, Madison, pp 403–430

    Google Scholar 

  • Rodkey KS, Kaczmarek DJ, Pope PE (1995) The distribution of nitrogen and phosphorus in forest floor layers of oak-hickory forests of varying productivity. Proc 10th Central Hardwood Forest Conference, Gen Tech: 94–108

  • Rowland AP, Haygarth PM (1997) Determination of total dissolved phosphorus in soil solutions. J Environ Qual 26:410–415

    Article  CAS  Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze E-D (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691

    Article  CAS  Google Scholar 

  • Schulten H-R, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL (2001) A procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci Soc Am J 65:1121–1128

    Article  CAS  Google Scholar 

  • Sollins P, Swanston C, Kleber M, Filley T, Kramer M, Crow S, Caldwell BA, Lajtha K, Bowden R (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324

    Article  CAS  Google Scholar 

  • Stevenson FJ (1986) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Swanston CW, Caldwell BA, Homann PS, Ganio L, Sollins P (2002) Carbon dynamics during long-term incubation of separate and recombined density fractions from seven forest soils. Soil Biol Biochem 34:1121–1130

    Article  CAS  Google Scholar 

  • Swanston CW, Torn MS, Hanson PJ, Southon JR, Garten CT, Hanlon EM, Ganio L (2005) Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment. Geoderma 128:52–62

    Article  CAS  Google Scholar 

  • Tan Z, Lal R, Owens L, Izaurralde RC (2007) Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Tillage Res 92:53–59

    Article  Google Scholar 

  • Tipping E, Somerville CJ, Luster J (2016) The C:N:P:S stoichiometry of soil organic matter. Biogeochemistry 130:117–131

    Article  CAS  Google Scholar 

  • Toberman H, Adams J, Tipping E, Schillereff D, Somerville C, Coull M, Helliwell R, Carter H, Guyatt H, Keenan P, Lawlor A, Pereira MG, Patel M, Tanna B, Thacker S, Thomson N, Owens J, Gibbs S, Smith D, Bryant C, Elliot F, Gulliver P (2016) Soil survey in England, Scotland and Wales carried out during 2013 and 2014 [LTLS]. NERC Environ Inform Data Centre. https://doi.org/10.5285/17bebd7e-d342-49fd-b631-841ff148ecb0

  • Trumbore SE (1993) Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Glob Biogeochem Cycles 7:275–290

    Article  CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306

    Article  PubMed  CAS  Google Scholar 

  • Walthert L, Zimmermann S, Blaser P, Luster J, Lüscher P (2004) Waldböden der Schweiz Vol 1. Hep Verlag, Bern 768 pp

    Google Scholar 

  • Wick B, Tiessen H (2008) Organic matter turnover in light fraction and whole soil under silvopastoral land use in semiarid northeast Brazil. Rangel Ecol Manag 61:275–283

    Article  Google Scholar 

  • Yang X, Post WM (2011) Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8:2907–2916

    Article  CAS  Google Scholar 

  • Zimmermann S, Luster J, Blaser P, Walthert L, Lüscher P (2006) Waldböden der Schweiz Vol 3. Hep Verlag, Bern 848 pp

    Google Scholar 

  • Zimmermann M, Leifeld J, Schmidt MWI, Fuhrer J (2007) Measured soil organic matter fractions can be related to pools in the RothC model. Eur J Soil Sci 58:658–667

    Article  Google Scholar 

Download references

Acknowledgements

This work received National Capability funding from the UK Natural Environment Research Council (CEH project number NEC04841). We are grateful to Alan Lawlor, Patrick Keenan, Manisha Patel and Binoti Tanna for help with analysis, and to Aidan Keith (CEH) and two anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. Adams.

Additional information

Responsible Editor: Phil Haygarth.

Electronic supplementary material

ESM 1

(XLSX 37 kb)

ESM 2

(DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, J.L., Tipping, E., Thacker, S.A. et al. An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation. Plant Soil 427, 139–148 (2018). https://doi.org/10.1007/s11104-017-3478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3478-4

Keywords

Navigation