Advertisement

Plant and Soil

, Volume 422, Issue 1–2, pp 67–79 | Cite as

Assembly of seed-associated microbial communities within and across successive plant generations

  • Samir Rezki
  • Claire Campion
  • Philippe Simoneau
  • Marie-Agnès Jacques
  • Ashley Shade
  • Matthieu BarretEmail author
Regular Article

Abstract

Background and aims

Seeds are involved in the transmission of microorganisms from one plant generation to another and consequently may act as the initial inoculum source for the plant microbiota. In this work, we assessed the structure and composition of the seed microbiota of radish (Raphanus sativus) across three successive plant generations.

Methods

Structure of seed microbial communities were estimated on individual plants through amplification and sequencing of genes that are markers of taxonomic diversity for bacteria (gyrB) and fungi (ITS1). The relative contribution of dispersal and ecological drift in inter-individual fluctuations were estimated with a neutral community model.

Results

Seed microbial communities of radish display a low heritability across plant generations. Fluctuations in microbial community profiles were related to changes in community membership and composition across plant generations, but also to variation between individual plants. Ecological drift was an important driver of the structure of seed bacterial communities, while dispersal was involved in the assembly of the fungal fraction of the seed microbiota.

Conclusions

These results provide a first glimpse of the governing processes driving the assembly of the seed microbiota.

Keywords

Seed-associated microbial community Heritability Community assembly Dispersal Ecological drift 

Notes

Acknowledgements

This research was supported by grant awarded by the Region des Pays de la Loire (metaSEED, 2013 10080) and the Michigan State University Plant Resilience Institute. The authors wish to thanks Gloria Torres-Cortes for manuscript assessment, Emmanuelle Laurent, Julie Gombert and Vincent Odeau (Fédération Nationale des Agriculteurs Multiplicateurs de Semences - FNAMS) for their help with all the field experiments, Aude Rochefort for the preparation of the sequencing library and Muriel Bahut from the platform ANAN of SFR Quasav for launching the MiSeq runs.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11104_2017_3451_MOESM1_ESM.pdf (546 kb)
ESM 1 (PDF 546 kb)

References

  1. Abarenkov K, Nilsson R, Larsson K, Alexander I, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor A, Tedersoo L, Ursing B, Vralstad T, Liimatainen K, Peintner U, Koljalg U (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285.  https://doi.org/10.1111/j.1469-8137.2009.03160.x CrossRefPubMedGoogle Scholar
  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  4. Badri D, Zolla G, Bakker M, Manter D, Vivanco J (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273.  https://doi.org/10.1111/nph.12124 CrossRefPubMedGoogle Scholar
  5. Barret M, Briand M, Bonneau S, Preveaux A, Valiere S, Bouchez O, Hunault G, Simoneau P, Jacques M (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266.  https://doi.org/10.1128/AEM.03722-14 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sanchez-Garcia M, Ebersberger I, de Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand Y, Sanli K, Eriksson K, Vik U, Veldre V, Nilsson R (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919.  https://doi.org/10.1111/2041-210X.12073. Google Scholar
  7. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10:e1004283CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buée M, Reich M, Murat C, Morin E, Nilsson R, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456.  https://doi.org/10.1111/j.1469-8137.2009.03003.x CrossRefPubMedGoogle Scholar
  9. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel N, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95CrossRefPubMedGoogle Scholar
  10. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefPubMedGoogle Scholar
  11. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10:655–664CrossRefPubMedGoogle Scholar
  12. Busby P, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655.  https://doi.org/10.1007/s11103-015-0412-0 CrossRefPubMedGoogle Scholar
  13. Chee-Sanford JC, Williams II MM, Davis AS, Sims GK (2006) Do microorganisms influence seed-bank dynamics? Weed Sci 54:575–587Google Scholar
  14. Classen A, Sundqvist M, Henning J, Newman G, Moore J, Cregger M, Moorhead L, Patterson C (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6:1–21.  https://doi.org/10.1890/ES15-00217.1
  15. Compant S, van der Heijden M, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214.  https://doi.org/10.1111/j.1574-6941.2010.00900.x PubMedGoogle Scholar
  16. Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefert P (2017) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11:43–55CrossRefPubMedGoogle Scholar
  17. Edgar R (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  18. Edgar R, Haas B, Clemente J, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:911–920CrossRefGoogle Scholar
  20. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23CrossRefGoogle Scholar
  21. Goggin DE, Emery RJ, Kurepin LV, Powles SB (2015) A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in Lolium rigidum seeds. Ann Bot 115:293–301CrossRefPubMedGoogle Scholar
  22. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hodgson S, de Cates C, Hodgson J, Morley N, Sutton B, Gange A (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208.  https://doi.org/10.1002/ece3.953 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Horton M, Bodenhausen N, Beilsmith K, Meng D, Muegge B, Subramanian S, Vetter M, Vilhjalmsson B, Nordborg M, Gordon J, Bergelson J (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 5:5320CrossRefPubMedPubMedCentralGoogle Scholar
  25. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396CrossRefPubMedPubMedCentralGoogle Scholar
  26. Klaedtke S, Jacques M, Raggi L, Preveaux A, Bonneau S, Negri V, Chable V, Barret M (2016) Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 18:1792–1804.  https://doi.org/10.1111/1462-2920.12977 CrossRefPubMedGoogle Scholar
  27. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lau J, Lennon J (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A 109:14058–14062.  https://doi.org/10.1073/pnas.1202319109. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Links M, Demeke T, Grafenhan T, Hill J, Hemmingsen S, Dumonceaux T (2014) Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytol 202:542–553.  https://doi.org/10.1111/nph.12693 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lopez-Velasco G, Carder P, Welbaum G, Ponder M (2013) Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett 346:146–154.  https://doi.org/10.1111/1574-6968.12216 CrossRefPubMedGoogle Scholar
  31. Lumactud R, Shen SY, Lau M, Fulthorpe R (2016) Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Front Microbiol 7:755CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lumactud R, Fulthorpe R, Sentchilo V, van der Meer JR (2017) Draft genome sequence of Plantibacter flavus strain 251 isolated from a plant growing in a chronically hydrocarbon-contaminated site. Genome Announc 5:e00276–e00217PubMedPubMedCentralGoogle Scholar
  33. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, dela Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lymperopoulou D, Adams R, Lindow S (2016) Contribution of vegetation to the microbial composition of nearby outdoor air. Appl Environ Microbiol 82:3822–3833.  https://doi.org/10.1128/AEM.00610-16 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maignien L, DeForce E, Chafee M, Eren A, Simmons S (2014) Ecological succession and stochastic variation in the assembly of arabidopsis thaliana phyllosphere communities. MBio 5:e00682–e00613CrossRefPubMedPubMedCentralGoogle Scholar
  36. Markowitz V, Chen I, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova N, Kyrpides N (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122.  https://doi.org/10.1093/nar/gkr1044 CrossRefPubMedGoogle Scholar
  37. McMurdie PJ, Holmes S (2013) phyloseq : an R package for reproductible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217Google Scholar
  38. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider J, Piceno Y, DeSantis T, Andersen G, Bakker P, Raaijmakers J (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100.  https://doi.org/10.1126/science.1203980 CrossRefPubMedGoogle Scholar
  39. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, von Maltzahn G, Sessitch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11PubMedPubMedCentralGoogle Scholar
  40. Munkvold GP (2009) Seed pathology progress in academia and industry. Annu Rev Phytopathol 47:285–311CrossRefPubMedGoogle Scholar
  41. Nelson E (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309.  https://doi.org/10.1146/annurev.phyto.42.121603.131041 CrossRefPubMedGoogle Scholar
  42. Nemergut D, Schmidt S, Fukami T, O'Neill S, Bilinski T, Stanish L, Knelman J, Darcy J, Lynch R, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356.  https://doi.org/10.1128/MMBR.00051-12 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Norros V, Penttilä R, Suominen M, Ovaskainen O (2012) Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos 121:961–974CrossRefGoogle Scholar
  44. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, O’Hara MPR, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan : community ecology package. Ordination methods, diversity analysis and other function for community and vegetation ecologists. R package version 2.4–2. https://CRAN.R-project.org/package=vegan)
  45. Panke-Buisse K, Poole A, Goodrich J, Ley R, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989.  https://doi.org/10.1038/ismej.2014.196 CrossRefPubMedGoogle Scholar
  46. Paredes SH, Lebeis SL (2016) Giving back to the community: microbial mechanisms of plant-soil interactions. Funct Ecol 30:1043–1052CrossRefGoogle Scholar
  47. Peay K, Kennedy P, Talbot J (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14:434–447.  https://doi.org/10.1038/nrmicro.2016.59 CrossRefPubMedGoogle Scholar
  48. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rezki S, Campion C, Iacomi-Vasilescu B, Preveaux A, Toualbia Y, Bonneau S, Briand M, Laurent E, Hunault G, Simoneau P, Jacques M, Barret M (2016) Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms. PeerJ 4:e1923.  https://doi.org/10.7717/peerj.1923
  50. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux J, L'Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043.  https://doi.org/10.1111/nph.13808 CrossRefPubMedGoogle Scholar
  51. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Cei FP, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331CrossRefPubMedGoogle Scholar
  52. Santhanam R, Luu V, Weinhold A, Goldberg J, Oh Y, Baldwin I (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci U S A 112:E5013–E5020.  https://doi.org/10.1073/pnas.1505765112 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C, Sahl J, Stres B, Thallinger G, Van Horn D, Weber C (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12CrossRefPubMedGoogle Scholar
  55. Shade A, Jacques M-A, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22CrossRefPubMedGoogle Scholar
  56. Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP (2007) Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb Ecol 53:443–455CrossRefPubMedGoogle Scholar
  57. Sommeria-Klein G, Zinger L, Taberlet P, Coissac E, Chave J (2016) Inferring neutral biodiversity parameters using environmental DNA data sets. Sci Rep 6:35644CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sugiyama A, Bakker M, Badri D, Manter D, Vivanco J (2013) Relationships between Arabidopsis genotype-specific biomass accumulation and associated soil microbial communities. Botany-Botanique 91:123–126.  https://doi.org/10.1139/cjb-2012-0217. CrossRefGoogle Scholar
  59. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50.  https://doi.org/10.1111/1758-2229.12181 CrossRefGoogle Scholar
  60. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43:6761–6771CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wagner M, Lundberg D, Coleman-Derr D, Tringe S, Dangl J, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17:717–726.  https://doi.org/10.1111/ele.12276 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wagner M, Lundberg D, del Rio T, Tringe S, Dangl J, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang Q, Garrity G, Tiedje J, Cole J (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Samir Rezki
    • 1
  • Claire Campion
    • 1
  • Philippe Simoneau
    • 2
  • Marie-Agnès Jacques
    • 3
  • Ashley Shade
    • 4
  • Matthieu Barret
    • 3
    Email author
  1. 1.IRHS, INRA, AGROCAMPUS-Ouest, Université d’AngersBeaucouzéFrance
  2. 2.INRA, UMR1345 Institut de Recherches en Horticulture et SemencesBeaucouzéFrance
  3. 3.UMR1345 Institut de Recherches en Horticulture et SemencesUniversité d’AngersBeaucouzéFrance
  4. 4.Department of Microbiology and Molecular Genetics; Program in Ecology, Evolutionary Biology, and Behavior; The DOE Great Lakes Bioenergy Research Center; and The Plant Resilience InstituteMichigan State UniversityEast LansingUSA

Personalised recommendations