Skip to main content

Advertisement

Log in

Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Chromium (Cr) toxicity is a rapidly increasing environmental concern and poses a major threat to plant growth as well as food chain. This study was carried out to screen spring wheat diversity panel against Cr toxicity to assess yield reduction, grain contamination extents and genomic regions associated with tolerance to Cr toxicity.

Methods

The diversity panel was planted in control and Cr stress (26 mg Cr/kg soil) in paved plots, and several morphological and physiological traits were recorded. Wheat 90 K Infinium iSelect SNP array was used to identify genomic regions underpinning tolerance to Cr toxicity.

Results

Some wheat cultivars (Khosar-95, Miraj-08, Millet-11, Sarsabaz and NARC-11) had Cr concentration within international edible threshold limit (1 ppm), but showed greater reduction to grain yield (63–95%) due to higher leaf Cr concentrations (2.35–8.95 ppm). Contrastingly, wheat cultivars Auqab-00 and Pakistan-13 had lower yield reduction up to 9% and 39%, respectively but had higher concentration of Cr in seeds (2.1 and 3.5 ppm, respectively). Genome-wide association studies identified 71 loci linked with yield related traits under Cr stress and 48 loci for differences between control and Cr stress treatments. Further, gene ontology of trait-associated SNPs revealed proteins with significant importance in plant development and tolerance against heavy metal stress.

Conclusion

To our knowledge, this is the first study for identification of genomic regions linked to Cr stress, suggesting that this could be useful to identify complex architecture of genetic factors as well as molecular breeding opportunities for tolerance to Cr stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari TB, Gurung S, Hansen JM, Jackson EW, Bonman JM (2012) Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. Plant Genome 5:1–16

    Article  Google Scholar 

  • Ahmad M, Wahid A, Ahmad SS, Butt ZA, Tariq M (2011) Ecophysiological responses of rice (Oryza sativa L.) to hexavalent chromium. Pak J Bot 43:2853–2859

    CAS  Google Scholar 

  • Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Farooq M, Jahangir M, Abbas F, Bharwana S, Zhang G (2013) Effect of chromium and nitrogen form on photosynthesis and anti-oxidative system in barley. Biol Plant 57:758–763

    Article  CAS  Google Scholar 

  • Anwar J, Subhani GM, Hussain M, Ahmad J, Hussain M, Munir M (2011) Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pak J Bot 43:1527–1530

    Google Scholar 

  • Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Ma LQ (2001) Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J 65:491–499

    Article  CAS  Google Scholar 

  • Chen BL, Yuan MX, Qian LB (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments 12:1350–1359

    Article  CAS  Google Scholar 

  • Ci DW, Jiang D, Li SS, Wollenweber B, Dai TB, Cao WX (2012) Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiol Plant 34:191–202

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832

    Article  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie S (2013) Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed 32:189–210

    Article  PubMed  PubMed Central  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signa Behav 5:663–667

    Article  CAS  Google Scholar 

  • Dhawan SS, Sharma A (2014) Analysis of differentially expressed genes in abiotic stress response and their role in signal transduction pathways. Protoplasma 251:81–91

    Article  PubMed  Google Scholar 

  • Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811

    Article  CAS  PubMed  Google Scholar 

  • Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11:648

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufey I, Hakizimana P, Draye X, Lutts S, Bertin P (2009) QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143–160

    Article  CAS  Google Scholar 

  • Fu ZJ, Li WH, Xing XL, Xu MM, Liu XY, Li HC, Xue YD, Liu ZH, Tang JH (2016) Genetic analysis of arsenic accumulation in maize using QTL mapping. Sci Rep 6:21292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajalakshmi S, Iswarya V, Ashwini R, Divya G, Mythili S, Sathiavelu A (2012) Evaluation of heavy metals in medicinal plants growing in Vellore District. Eur J Exp Biol 2:1457–1461

    CAS  Google Scholar 

  • Ganesh KS, Baskaran L, Rajasekaran S, Sumathi K, Chidambaram AL, Sundaramoorthy P (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids Surf B: Biointerfaces 63:159–163

    Article  CAS  PubMed  Google Scholar 

  • Gopal R, Rizvi AH, Nautiyal N (2009) Chromium alters iron nutrition and water relations of spinach. J Plant Nutr 32:1551–1559

    Article  CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  PubMed  Google Scholar 

  • Huang TL, Huang LY, Fu SF, Trinh NN, Huang HJ (2014) Genomic profiling of rice roots with short- and long-term chromium stress. Plant Mol Biol 86:157–170

    Article  CAS  PubMed  Google Scholar 

  • Karenlampi S, Schat H, Vangronsveld J, Verkleij JA, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  CAS  PubMed  Google Scholar 

  • Knox RE, Pozniak CJ, Clarke FR, Clarke JM, Houshmand S, Singh AK (2009) Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome 52:741–747

    Article  CAS  PubMed  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW (2013a) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32:411–423

    Article  CAS  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW (2013b) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.) PLoS One 8:e57500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  PubMed  Google Scholar 

  • Lan H-X, Wang Z-F, Wang Q-H, Wang M-M, Bao Y-M, Huang J, Zhang H-S (2013) Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.) Mol Biol Rep 40:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99:2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S (2010) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  PubMed  Google Scholar 

  • Maccaferri M, Ratti C, Rubies-Autonell C, Vallega V, Demontis A, Stefanelli S, Tuberosa R, Sanguineti MC (2011) Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci. Theor Appl Genet 123:527–544

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney R, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.) Mol Breed 27:37–58

    Article  Google Scholar 

  • Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311:73–86

    Article  CAS  Google Scholar 

  • Panda S, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    Article  CAS  Google Scholar 

  • Pask A, Pietragalla J, Mullan D, Reynolds M (2012) Physiological breeding II: a field guide to wheat phenotyping. CIMMYT

    Google Scholar 

  • Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E (2015) Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol 16:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin P, Wang L, Liu K, Mao S, Li Z, Gao S, Shi H, Liu Y (2015) Genomewide association study of Aegilops tauschii traits under seedling-stage cadmium stress. Crop J 3: 405–415

  • Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E (2011) Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J 65:745–756

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hao Y, Xia XC, Khan A, Xu Y, Varshney RK, He ZH (2017) Crop breeding chips and genotyping platforms: progress, challenges and perspectives. Mol Plant 10:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Santos C, Azevedo R, Moutinho-Pereira J, Correia C, Dias MC (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Bioch 53:94–100

    Article  CAS  Google Scholar 

  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

    Article  Google Scholar 

  • Roosens NH, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    Article  CAS  PubMed  Google Scholar 

  • Samantaray S, Rout GR, Das P (1998) Role of chromium on plant growth and metabolism. Acta Physiol Plant 20:201–212

    Article  CAS  Google Scholar 

  • Shanker A, Sudhagar R, Pathmanabhan G (2003) Growth, phytochelatin SH and antioxidative response of sunflower as affected by chromium speciation. 2nd international congress of plant physiology on sustainable plant productivity under changing environment, New Delhi

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics : Integrated Biometal Science 1:375–383

    Article  CAS  Google Scholar 

  • Sharma DC, Sharma CP (1993) Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res Commun 21:317–322

    CAS  Google Scholar 

  • Sharma D, Chatterjee C, Sharma C (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD 2204) metabolism. Plant Sci 111:145–151

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Soric R, Loncaric Z, Kovacevic V, Brkic I, Simic D (2009) A major gene for leaf cadmium accumulation in maize (Zea mays L.). The Proceedings of the International Plant Nutrition Colloquium XVI

  • Sorić R, Ledenčan T, Zdunić Z, Jambrović A, Brkić I, Lončarić Z, Kovačević V, Šimić D (2012) Quantitative trait loci for metal accumulation in maize leaf. Maydica 56:323–329

    Google Scholar 

  • Srivastava S, Jain R (2011) In-situ monitoring of chromium cytotoxicity in sugarcane. J Environ Biol 32:759–763

    CAS  PubMed  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H (2007) Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.) Soil Sci Plant Nutr 53:72–77

    Article  CAS  Google Scholar 

  • Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150:205–224

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New phytol 182:644–653

    Article  CAS  PubMed  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L (2013) Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. Plos One 8: e66539

  • Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waseem A, Arshad J, Iqbal F, Sajjad A, Mehmood Z, Murtaza G (2014) Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. Biomed Res Int 813206

  • Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ (2010) Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 121:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Xue DW, Chen MC, Zhang GP (2009) Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.) Euphytica 165:587–596

    Article  CAS  Google Scholar 

  • Yang N, Wang CL, He WP, Qu YZ, Li YS (2016) Photosynthetic characteristics and effects of exogenous glycine of Chorispora bungeana under drought stress. Photosynthetica 54:459–467

    Article  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309

    Article  CAS  PubMed  Google Scholar 

  • Yu L-X, Morgounov A, Wanyera R, Keser M, Singh SK, Sorrells M (2012) Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor Appl Genet 125:749–758

    Article  PubMed  Google Scholar 

  • Zdunic Z, Grljusic S, Ledencan T, Duvnjak T, Simic D (2014) Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population. Hereditas 151:55–60

    Article  PubMed  Google Scholar 

  • Zhang J, Zhu Y, Zeng D, Cheng W, Qian Q, Duan G (2008) Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytol 177:350–355

    CAS  PubMed  Google Scholar 

  • Zitka O, Krystofova O, Hynek D, Sobrova P, Kaiser J, Sochor J (2013) Metal transporters in plants. In: Corpas FJ, Palma JM (eds) In: DK Gupta. Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg

    Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollut 127:373–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Masood Quraishi.

Additional information

Responsible Editor: Fangjie Zhao

Fakhra Almas and Arfa Bibi have performed the experimental work. Adeel Hassan, Masab Ali and Sadia lateef have helped in analysis and computation. Tariq Mahmood has provided the logistics necessary for analysis. Umar masood Quraishi and Awais Rasheed wrote the article.

Electronic supplementary material

ESM 1

(XLSX 17.1 kb)

ESM 2

(XLSX 61.8 kb)

ESM 3

(XLSX 18.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almas, F., Hassan, A., Bibi, A. et al. Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.). Plant Soil 422, 371–384 (2018). https://doi.org/10.1007/s11104-017-3436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3436-1

Keywords

Navigation