Advertisement

Plant and Soil

, Volume 424, Issue 1–2, pp 303–317 | Cite as

Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics

  • Yves Le Bissonnais
  • Iván Prieto
  • Catherine Roumet
  • Jérôme Nespoulous
  • James Metayer
  • Sylvain Huon
  • Mario Villatoro
  • Alexia Stokes
Regular Article

Abstract

Aims

Our aim was to determine the effect of soil characteristics and root traits on soil aggregate stability at an inter- and intra-site scale in a range of agro-ecosystems. We also evaluated the effect of soil depth and the type of land use on aggregate stability.

Methods

Soil aggregate stability, soil physicochemical properties and fine root traits were measured along land use gradients (from monocultures to agroforestry systems and forests), at two soil depths at four sites (Mediterranean and tropical climates) with contrasting soils (Andosol, Ferralsol, Leptosol and Fluvisol).

Results

Aggregate stability was much lower in deep than in surface soil layers, likely linked to lower soil organic carbon (SOC) and lower root mass density (RMD). Locally, and consistently in all sites, land use intensification degrades soil aggregate stability, mainly in surface soil layers. Soil organic carbon, cation exchange capacity and root traits: water-soluble compounds, lignin and medium root length proportion were the most important drivers of aggregate stability at the inter-site level, whereas SOC, root mass and root length densities (RMD, RLD) were the main drivers at the intra-site level.

Conclusions

Overall, the data suggest different controls on soil aggregate stability globally (soil) and locally (roots). Conversion from forests to agricultural land will likely lead to greater C losses through a loss of aggregate stability and increased soil erosion.

Keywords

Aggregate stability Land use Root traits Soil depth Soil organic carbon 

Notes

Acknowledgements

We are grateful to the Agence Nationale de la Recherche in France for funding this work (Ecosfix ANR-10-STRA-003-001) and the Ecosfix Consortium for helping collect the root material at the different sites. Alain Pierret (IRD), Olivier Roupsard (CIRAD) and Christian Dupraz (INRA) provided the necessary technical and human infrastructure at the different field sites in Laos, Costa Rica and Restinclières, respectively. We are grateful to Luis Merino-Martin (INRA) for helpful comments to improve the manuscript and to Jérome Pérez (INRA) who helped develop a database to store the project data. All plant trait morphological and chemical analyses were conducted at the Plateforme d’Analyses Chimiques en Ecologie (technical facilities of the Labex Centre Méditerranéen de l’Environnement et de la Biodiversité) and the soil stability aggregate analyses were conducted at LISAH in Montpellier.

Author contribution

AS, YLB, IP and CR planned and designed the research and all authors conducted the fieldwork. JN, JM, MV, SH and YLB measured soil variables, IP and CR measured root traits, IP compiled and analyzed the data, YLB, IP and CR wrote the manuscript and all authors contributed to the final version.

Supplementary material

11104_2017_3423_MOESM1_ESM.docx (55 kb)
ESM 1 (DOCX 55 kb)

References

  1. Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability – A literature analysis. Soil Biol Biochem 41:1–12CrossRefGoogle Scholar
  2. Ali HE, Reineking B, Münkemüller T (2017) Effects of plant functional traits on soil stability: intraspecific variability matters. Plant Soil 411:359–375CrossRefGoogle Scholar
  3. Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72Google Scholar
  4. Baldock JA, Nelson PN (2000) Soil Organic Matter. In: Summer ME (ed) Handbook of Soil Science. CRC Press, Boca Raton, pp B25–B84Google Scholar
  5. Bardgett LD, Mommer L, De Vries FT (2014) Going underground : root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699CrossRefPubMedGoogle Scholar
  6. Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC (2010) Contributions of biotic and abiotic factors of soil agreation across a land use gradient. Soil Biol Biochem 42:2316–2324CrossRefGoogle Scholar
  7. Barthès B, Roose E (2002) Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133–149CrossRefGoogle Scholar
  8. Barthès B, Kouakoua E, Larré-Larrouy MC, Razafimbelo TM, De Luca EF, Azontonde A, Neves C, De Freitas PL, Feller C (2008) Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils. Geoderma 143:14–25CrossRefGoogle Scholar
  9. Bast A, Wilcke W, Graf F, Lüscher P, Gärtner H (2014) The use of mycorrhiza for eco-engineering measures in steep alpine environments: effects on soil aggregate formation and fine-root development. Earth Surf Proc Land 39:1753–1763CrossRefGoogle Scholar
  10. Bird SB, Herricka JE, Wanderb MM, Wrightc SF (2002) Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ Pollut 116:445–455CrossRefPubMedGoogle Scholar
  11. Borken W, Kossmann G, Matzner E (2007) Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant Soil 292:79–93CrossRefGoogle Scholar
  12. Boudot JP, Bel Hadji BA, Choné T (1986) Carbon mineralization in Andosols and aluminium-rich highlands soils. Soil Biol Biochem 18:457–461CrossRefGoogle Scholar
  13. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22CrossRefGoogle Scholar
  14. Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Change Biol 21:3200–3209CrossRefGoogle Scholar
  15. Cerdan O, Govers G, Le Bissonnais Y, Van Oost K et al (2010) The rate and spatial variation of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122:167–177CrossRefGoogle Scholar
  16. Cheng M, Xianga Y, Xueb Z, An S, Darboux F (2015) Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena 124:77–84CrossRefGoogle Scholar
  17. Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64:1479–1486CrossRefGoogle Scholar
  18. Ciesielski H, Sterckeman T (1997) A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils. Agronomie 17:9–15CrossRefGoogle Scholar
  19. Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779CrossRefGoogle Scholar
  20. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995CrossRefPubMedGoogle Scholar
  21. Czarnes S, Dexter AR, Bartoli F (2000) Wetting and drying cycles in the maize rhizosphere under controlled conditions. Mechanics of the root-adhering soil. Plant Soil 221:253–271CrossRefGoogle Scholar
  22. Daynes CN, Field DJ, Saleeba JA, Cole MA, McGee Peter A (2013) Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biol Biochem 57:683–694CrossRefGoogle Scholar
  23. Dupraz C, Fournier C, Balvay Y, Dauzat M, Pesteur S, Simorte V (1999) Influence de quatre années de culture intercalaire de blé et de colza sur la croissance de noyers hybrides en agroforesterie. In : Bois et Forêts Des Agriculteurs. CEMAGREF Editions, Anthony, pp 95–114Google Scholar
  24. Duran Zuazo VH, Rodriguez Pleguezuelo CR (2008) Soil-erosion and runoff prevention by plant covers. A review. Agronon Sustain Dev 28:65–86CrossRefGoogle Scholar
  25. Erktan A (2013) Interactions entre composition fonctionnelle de communautés végétales et formation des sols dans des lits de ravines en cours de restauration écologique. PhD thesis, Université de Grenoble (Grenoble)Google Scholar
  26. Erktan A, Cécillon L, Graf F, Roumet C, Legout C, Rey F (2016) Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant Soil 398:121–137CrossRefGoogle Scholar
  27. Eviner VT, Chapin FS (2002) The influence of plant species, fertilization and elevated CO2 on soil aggregate stability. Plant Soil 246:211–219CrossRefGoogle Scholar
  28. Fattet M, Fu Y, Ghestem M, Ma W, Foulonneau M, Nespoulous J, Le Bissonnais Y, Stokes A (2011) Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena 87:60–69CrossRefGoogle Scholar
  29. Food and Agriculture Organization of the United Nations (FAO), Intergovernmental Technical Panel on Soils (ITPS) (2015) Status of the World’s Soil Resources (SWSR) - Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, RomeGoogle Scholar
  30. Fort F, Volaire F, Guilioni L, Barkaoui K, Navas ML, Roumet C (2017) Root traits are related to plant water-use among rangeland Mediterranean species. Funct Ecol (In Press)Google Scholar
  31. Fortunel C, Garnier E, Joffre R et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611CrossRefPubMedGoogle Scholar
  32. Fox J, Weisberg S, Friendly M, Hong J, Andersen R, Firth D, Taylor S (2014) Effect displays for Linear, Generalized Linear, and other models. J Stat Softw 8:1–27Google Scholar
  33. Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013) Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952CrossRefGoogle Scholar
  34. Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  35. Girardin C, Mariotti A (1991) Analyse isotopique du 13C en abondance naturelle dans le carbone organique: un système automatique avec robot préparateur. Cahiers ORSTOM Série Pédologie 26:371–380Google Scholar
  36. Gould IJ, Quinton JN, Weigelt A, De Deyn GB, Bardgett RD (2016) Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol Lett 19:1140–1149.  https://doi.org/10.1111/ele.12652 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Graf F, Frei M (2013) Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecol Eng 57:314–323CrossRefGoogle Scholar
  38. Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963CrossRefGoogle Scholar
  39. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  40. Hummel I, Vile D, Violle C, Devaux J, Ricci B, Blanchard A, Garnier E, Roumet C (2007) Relating root structure and anatomy to whole plant functioning in 14 herbaceous Mediterranean species. New Phytol 173:313–321CrossRefPubMedGoogle Scholar
  41. Huon S, Grousset FE, Burdloff D, Mariotti A, Bardoux G (2002) Sources of fine organic matter in the North Atlantic Heinrich layers: d13C and d15N isotope tracers. Geochim Cosmochim Ac 66:223–239CrossRefGoogle Scholar
  42. Igwe CA, Akamigbo FOR, Mbagwu JSC (1999) Chemical and mineralogical properties of soils in southeastern Nigeria in relation to aggregate stability. Geoderma 92:111–123CrossRefGoogle Scholar
  43. ISO (2012) ISO Standard 10930: Soil quality—Measurement of the stability of soil aggregates subjected to the action of water. ISO, GenevaGoogle Scholar
  44. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. Rome, Food and Agriculture Organization (FAO)Google Scholar
  45. Katuwal S, Vermang J, Cornelis WM, Gabriels D, Moldrup L, de Jonge W (2013) Effect of Root Density on Erosion and Erodibility of a Loamy Soil Under Simulated Rain. Soil Sci 178:29–36CrossRefGoogle Scholar
  46. Kinoshita R, Roupsard O, Chevallier T et al (2016) Large topsoil organic car- bon variability is controlled by Andisol properties and effectively assessed by VNIR spectroscopy in a coffee agroforestry system of Costa Rica. Geoderma 262:254–265CrossRefGoogle Scholar
  47. Lado M, Ben-Hur M, Shainberg I (2004) Soil wetting and texture effects on aggregate stability, seal formation, and erosion. Soil Sci Soc Am J 68:1992–1999CrossRefGoogle Scholar
  48. Le Bissonnais Y, Singer MJ (1993) Seal formation, runoff and interrill erosion from 17 California soils. Soil Sci Soc Am J 57:224–229CrossRefGoogle Scholar
  49. Le Bissonnais Y (1996) Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci 47:425–437CrossRefGoogle Scholar
  50. Le Bissonnais Y, Arrouays D (1997) Aggregate stability and assessment of crustability and erodibility: 2. Application to humic loamy soils with various organic carbon content. Eur J Soil Sci 48:39–48CrossRefGoogle Scholar
  51. Le Bissonnais Y, De Noni G, Blavet D, Laurent JY, Asseline J, Chenu C (2007) Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. Eur J Soil Sci 58:188–195CrossRefGoogle Scholar
  52. Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finér L, Kanazawa Y (2010) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104CrossRefGoogle Scholar
  53. Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327CrossRefGoogle Scholar
  54. Miller R, Jastrow J (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–84Google Scholar
  55. Morel JL, Habib L, Plantureux S, Guckert A (1991) Influence of maize root mucilage on soil aggregate stability. Plant Soil 136:111–119CrossRefGoogle Scholar
  56. Olsen SR, Cole CV, Watanabe FS (1954) Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA monograph 939, 18 pGoogle Scholar
  57. Pansu M, Gautheyrou J (2003) Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer VerlagGoogle Scholar
  58. Pérès G, Cluzeau D, Menasseri S, Soussana JF et al (2013) Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373:285–299CrossRefGoogle Scholar
  59. Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R (2016) nlme: Linear and nonlinear mixed effects models. R package version 3:1–128Google Scholar
  60. Pohl M, Alig D, Körner C, Rixen C (2009) Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324:91–102CrossRefGoogle Scholar
  61. Pohl M, Graf F, Buttler A et al (2012) The relationship between plant species richness and soil aggregate stability can depend on disturbance. Plant Soil 355:87–102CrossRefGoogle Scholar
  62. Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A (2015) Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373CrossRefGoogle Scholar
  63. Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733CrossRefGoogle Scholar
  64. Qui L, Wei X, Gao J, Zhang X (2015) Dynamics of soil aggregate- associated organic carbon along an afforestation chronosequence. Plant Soil 391:237–251CrossRefGoogle Scholar
  65. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388CrossRefPubMedGoogle Scholar
  66. Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K, Stokes A (2016) Root structure - function relationships in 74 herbaceous species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826CrossRefPubMedGoogle Scholar
  67. Segalen P (1968) Note : méthode de détermination des produits minéraux amorphes dans les sols à hydroxydes tropicaux. Cahiers ORSTOM, Série Pédologie 6:105–126Google Scholar
  68. Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328CrossRefGoogle Scholar
  69. Silver W, Miya R (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419CrossRefPubMedGoogle Scholar
  70. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56CrossRefPubMedGoogle Scholar
  71. Stokes A, Douglas GB, Fourcaud T et al (2014) Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners. Plant Soil 377:1–23CrossRefGoogle Scholar
  72. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. Eur J Soil Sci 33:141–163CrossRefGoogle Scholar
  73. Torres-Guerrero CA, Etchevers JD, Fuentes-Ponce MH, Govaerts B, De León-González F, Herrera JM (2013) Influence of the Roots on Soil Aggregation. Terra Latinoamericana 31:71–84Google Scholar
  74. Villatoro M, Le Bissonnais Y, Moussa R, Rapidel B (2015) Temporal dynamics of runoff and soil loss on a plot scale under a coffee plantation on steep soil (Ultisol), Costa Rica. J Hydrol 523:409–426CrossRefGoogle Scholar
  75. Vanguelova EI, Nortcliff S, Moffat J, Kennedy F (2005) Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 270:233–247CrossRefGoogle Scholar
  76. Zangaro W, de Assis RL, Rostirola LV, de Souza PB, Gonçalves MC, Andrade G, Nogueira MA (2008) Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 19:37–45Google Scholar
  77. Zhang X, Wang W (2015) The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci Rep 5:9940.  https://doi.org/10.1038/srep09940 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhou Z, Shangguan Z (2007) Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant Soil 291:119–129CrossRefGoogle Scholar
  79. Zhou H, Peng XH, Peth S, Xiao T (2012) Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography. Soil Till Res 124:17–23CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.INRA, Laboratoire d’étude des Interactions Sol-Agrosystème-Hydrosystème (LISAH), INRA, IRD, SupAgro, Univ. MontpellierMontpellierFrance
  2. 2.Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE)Montpellier Cedex 5France
  3. 3.Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)EspinardoSpain
  4. 4.Inra, Amap, Ird, Cnrs, CiradUniversity MontpellierMontpellier Cedex 5France
  5. 5.UPMC - UMR iEES (Institut d’écologie et des sciences de l’environnement de Paris)Paris Cedex 05France
  6. 6.Centro de Investigaciones AgronómicasUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations