Skip to main content
Log in

Diverse bacterial taxa inhabit root nodules of lucerne (Medicago sativa L.) in New Zealand pastoral soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript


Background and aims

Pseudomonas spp. have previously been isolated from lucerne nodules. The aims of this study were to: 1) investigate the microbiome within a lucerne nodule; and 2) assess the ability of two Pseudomonas spp. isolated from lucerne nodules to form nodules.


The microbial community within 27 lucerne nodules, collected from plants inoculated with Sinorhizobium meliloti as a seed coat or peat slurry and an uninoculated control, was identified using 16S rRNA based Illumina sequencing. Lucerne seedlings were inoculated with the two Pseudomonas spp. strains. The plants were grown in sterile conditions for 6 weeks and nodulation was assessed. 16S rRNA, nodC, nodA and nifH genes were amplified.


Sinorhizobium was the dominant genus in nodules, comprising 90–99% of all sequences regardless of inoculation treatment. Overall, 9 other genera were identified, with each represented by <3% of the total sequences. Both Pseudomonas strains were able to form nodules with lucerne. From one of these strains, a nodC gene was detected.


Lucerne nodules contained a diverse assemblage of bacterial species, some of which were capable of forming nodules in the absence of rhizobia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  • Bai Y, D'Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de Bashan L (2005) Plant growth-promoting. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier, Oxford, pp 103–115

    Chapter  Google Scholar 

  • Bauer WD (1981) Infection of legumes by rhizobia. Annu Rev Plant Physiol 32(1):407–449

    Article  CAS  Google Scholar 

  • Burton JC (1972) Nodulation and symbiotic nitrogen fixation. In: Hanson CH (ed) Alfalfa: Scence and technology. American Society of Agronomy, Madison, pp 229–246

    Google Scholar 

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185(24):7266–7272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denarie J, Debelle F, Prome J-C (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65(1):503–535

    Article  CAS  PubMed  Google Scholar 

  • Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindström K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of loess plateau in China. FEMS Microbiol Ecol 76(3):463–475

    Article  CAS  PubMed  Google Scholar 

  • Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1(3):895–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudeja S, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52(3):248–260

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandee CM, Harrison SP, Davies WP (1999) Genetic characterization of naturally occuring Rhizobium meliloti populations and their potential to form effective symbioses with lucerne. Lett Appl Microbiol 28:169–174

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Lv C, Zhao Y, Huang R (2012) A novel strain D5 isolated from Acacia confusa. PLoS One 7(11):e49236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite J, Fischer D, Rouws LFM, Fernandes-Júnior PI, Hofmann A, Kublik S, Schloter M, Xavier GR, Radl V (2017) Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front Plant Sci 7(2064).

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58(6):1409–1413

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Ridgway H, James T, Premaratne M, Andrews M (2012) Characterisation of rhizobia nodulating Galega offtcinalis (goat's rue) and Hedysarum coronarium (sulla). New Zealand Plant Protection 65:192–196

    CAS  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63(3):383–400

    Article  CAS  PubMed  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67(5):2255–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 33(5):269–274

    Article  CAS  PubMed  Google Scholar 

  • Stajković O, De Meyer S, Miličić B, Willems A, Delić D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.) Botanica Serbica 33(1):107–114

    Google Scholar 

  • Stajkovic-Srbinovic O, De Meyer SE, Milicic B, Delic D, Willems A (2012) Genetic diversity of rhizobia associated with alfalfa in Serbian soils. Biol Fertil Soils 48(6):531–545.

    Article  Google Scholar 

  • Sturz A, Christie B, Matheson B, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25(1):13–19

    Article  Google Scholar 

  • Talebi MB, Bahar M, Saeidi G, Mengoni A, Bazzicalupo M (2008) Diversity of Sinorhizobium strains nodulating Medicago sativa from different Iranian regions. FEMS Microbiol Lett 288(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Tan HW, Weir BS, Carter N, Heenan PB, Ridgway HJ, James EK, Sprent JI, Young JPW, Andrews M (2012) Rhizobia with 16S rRNA and nifH similar to Mesorhizobium huakuii but novel recA, glnII, nodA and nodC genes are symbionts of New Zealand Carmichaelinae. PLoS One 7(10):e47677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M (2012) Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS One 7(8):e42671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application of fingerprinting of bacterial genomes. Nucleic Acids Res 19(24):6823–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb Ecol 52(3):436–443

    Article  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicaksono WA, Jones EE, Monk J, Ridgway HJ (2016) The bacterial signature of Leptospermum scoparium (Mānuka) reveals core and accessory communities with bioactive properties. PLoS One 11(9):e0163717

    Article  PubMed  PubMed Central  Google Scholar 

  • Wigley K (2017) Aspects of soil ecology of rhizobia affecting nodule occupancy on lucerne and white clover. Lincoln University, Thesis

    Google Scholar 

  • Wigley K, Liu WYY, Khumalo Q, Moot DJ, Brown DS, Ridgway HJ (2015) Effectiveness of three inoculation methods for lucerne (Medicago sativa L.) in two Canterbury soils. N Z J Agric Res:1–10.

    Article  CAS  Google Scholar 

  • Wynn-Williams R (1982) Lucerne establishment – conventional in: Wynn-Williams R (ed) Lucerne for the 80's. Agronomy Society of New Zealand, Christchurch, pp 11–20

    Google Scholar 

  • Young JPW, Johnston AWB (1989) The evolution of specificity in legume rhizobium symbiosis. Trends Ecol Evol 4(11):341–349.

    Article  CAS  PubMed  Google Scholar 

  • Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S (2015) A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11(6):e1005280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci 113(49):E7996–E8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kathryn Wigley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Online Resource 1

Barcoded primers (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wigley, K., Moot, D., Wakelin, S.A. et al. Diverse bacterial taxa inhabit root nodules of lucerne (Medicago sativa L.) in New Zealand pastoral soils. Plant Soil 420, 253–262 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: