Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions

Abstract

Background and aims

Although silicon (Si) is known to improve plant growth under low phosphorus (P) conditions, the in planta mechanisms responsible for this effect are still unknown. Here, we investigated the role of Si on P uptake along with the expression of Pi transporters in wheat (Triticum aestivum L.) grown in low P acid soil in comparison with P fertilization and liming.

Methods

A combined approach was performed including analyses of rhizosphere soil, tissue P content, the expression of the root Pi transporter genes (TaPHT1.1 and TaPHT1.2), and the root exudation of citrate and malate.

Results

Supply of Si in a form of Na2SiO3 increased shoot P concentration to an adequate level in the range of P-fertilized plants. Silicon ameliorated low soil pH and high Al3+ comparable to the effect of liming. The in planta effect of Si on up-regulating the expression of TaPHT1.1 and TaPHT1.2 was several fold higher and consequently P uptake doubled compared to both P fertilization and liming. In addition, Si directly stimulated root Pi acquisition by prominently increasing both malate and citrate exudation rate.

Conclusions

Application of Si increased root exudation of organic acids that mobilize Pi in the rhizosphere and up-regulated Pi transporters in wheat roots.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bergmann W (1992) Nutritional disorders of plants. Development, visual and analytical diagnosis. Gustav Fischer, Jena

    Google Scholar 

  2. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Che J, Yamaji N, Shao JF, Ma JF, Shen RF (2016) Silicon decreases both uptake and root-to-shoot translocation of manganese in rice. J Exp Bot 67:1535–1544

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Cheong YWY, Chan PY (1973) Incorporation of P32 in phosphate esters of the sugar cane plant and the effect of Si and al on the distribution of these esters. Plant Soil 38:113–123

    CAS  Article  Google Scholar 

  5. Davies TGE, Ying J, Xu Q, Li ZS, Li J, Gordon-Weeks R (2002) Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant Cell Environ 25:1325–1339

    CAS  Article  Google Scholar 

  6. Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Egner H, Riehm H, Domingo W (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor und Kaliumbestimmung. K Lantbrukshoegsk Ann 26:199–215

    CAS  Google Scholar 

  8. Fauteux F, Chain F, Belzile F, Menzies JG, Belanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci U S A 103:17554–17559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Fisher RA (1929) A preliminary note on the effect of sodium silicate in increasing the yield of barley. J Agric Sci 19:132–139

    CAS  Article  Google Scholar 

  10. Gu M, Chen A, Sun S, Xu G (2016) Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Mol Plant 9:396–416

    CAS  Article  PubMed  Google Scholar 

  11. Huang CY, Shirley N, Genc Y, Shi BJ, Langridge P (2011) Phosphate utilization efficiency correlates with expression of low affinity phosphate transporters and noncoding RNA, IPS1 in barley. Plant Physiol 156:1217–1229

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Karthikeyan AS, Varadarajan DK, Mukatira UT, D’Urzo MP, Damsz B, Raghothama KG (2002) Regulated expression of Arabidopsis phosphate transporters. Plant Physiol 130:221–233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Jof Plant Growth Regul 33:137–149

    CAS  Article  Google Scholar 

  14. Kostic L, Nikolic N, Samardzic J, Milisavljevic M, Maksimovic V, Cakmak D, Manojlovic D, Nikolic M (2015) Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biol Fertil Soils 51:289–298

    CAS  Article  Google Scholar 

  15. Lambers H, Plaxton WC (2015) Phosphorus: back to the roots. In: Plaxton W, Lambers H (eds) phosphorus metabolism in plants. Annual Plant Reviews, Vol. 48, Willey, New York, pp 3-22

  16. Leggewie G, Willmitzer L, Riesmeier JW (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9:381–392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture. From theory to practice, Springer, Dordrecht

    Google Scholar 

  18. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 56:1041–1049

    Article  Google Scholar 

  19. Ma JF, Takahashi E (1989) Effect of silicic acid on phosphorus uptake by rice plant. Soil Sci Plant Nutr 35:227–234

    CAS  Article  Google Scholar 

  20. Ma JF, Takahashi E (1990a) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119

    CAS  Article  Google Scholar 

  21. Ma JF, Takahashi E (1990b) The effect of silicic acid on rice in a P-deficient soil. Plant Soil 126:121–125

    CAS  Article  Google Scholar 

  22. Ma JF, Takahashi E (1991) Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant Soil 133:151–155

    CAS  Article  Google Scholar 

  23. Miao J, Sun J, Liu D, Li B, Zhang A, Li Z, Tong Y (2009) Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. J Genet Genomics 36:455–466

    CAS  Article  PubMed  Google Scholar 

  24. Neu S, Schaller J, Dude EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.) Sci Rep 7:40829. doi:10.1038/srep40829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    CAS  Article  Google Scholar 

  26. Owino-Gerroh C, Gascho GJ (2004) Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Commun Soil Sci Plant Anal 35:2369–2378

    CAS  Article  Google Scholar 

  27. Pavlovic J, Samardzic J, Maksimovic V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M (2013) Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol 198:1096–1107

    CAS  Article  PubMed  Google Scholar 

  28. Pearse SJ, Veneklaas EJ, Cawthray GR, Barber MDA, Lambers H (2006) Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing less carboxylates into the rhizosphere. New Phytol 169:515–524

    CAS  Article  PubMed  Google Scholar 

  29. Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190

    CAS  Article  Google Scholar 

  30. Piňeros MA, Cancado GMA, Kochian LV (2008) Novel properties of the wheat aluminum. Tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: functional and structural implications. Plant Physiol 147:2131–2146

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD (1997) Aluminium activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci U S A 94:6547–6552

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Ryan PR, James RA, Weligama C, Delhaize E, Rattey A, Lewis DC, Bovill WD, McDonald G, Rathjen TM, Wang E, Fettell NA, Richardson AE (2014) Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat. Physiol Plant 151:230–242

    CAS  Article  PubMed  Google Scholar 

  34. Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Smyth TJ, Sanchez PA (1980) Effects of lime, silicate, and phosphorus applications to an oxisol on phosphorus sorption and ion retention. Soil Sci Soc Am J 44:500–505

    CAS  Article  Google Scholar 

  36. Teng W, Deng Y, Chen XP, Xu XF, Chen RY, Lv Y, Zhao YY, Zhao XQ, He X, Li B, Tong YP, Zhang FS, Li ZS (2013) Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. J Exp Bot 64:1403–1411

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Tittarelli A, Milla L, Vargas F, Morales A, Neupert C, Meisel LA, Salvo GH, Peñaloza E, Muñoz G, Corcuera LJ, Silva H (2007) Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. J Exp Bot 58:2573–2582

    CAS  Article  PubMed  Google Scholar 

  38. Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970-2100 period: a scenario analysis of resource depletion. Glob Environ Chang 20:428–439

    Article  Google Scholar 

  39. Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Krogstad T, Clarke JL, Hallama M, Øgaard AF, Eich-Greatorex S, Kandeler E, Clarke N (2016) Rhizosphere organic anions play a minor role in improving crop species’ ability to take up residual phosphorus (P) in agricultural soils low in P availability. Front Plant Sci 7:1664. doi:10.3389/fpls.2016.01664

    PubMed  PubMed Central  Google Scholar 

  41. Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S, Zeng R (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci U S A 110:3631–3639

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development (OI-173028 to M.N. and in a part OI-173005).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miroslav Nikolic.

Additional information

Responsible Editor: John Hammond.

Electronic supplementary material

ESM 1

(PDF 61 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kostic, L., Nikolic, N., Bosnic, D. et al. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419, 447–455 (2017). https://doi.org/10.1007/s11104-017-3364-0

Download citation

Keywords

  • Acid soil
  • Phosphorus uptake
  • PHT1 transporters
  • Rhizosphere
  • Root exudates
  • Silicon
  • Wheat (Triticum aestivum)