Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands

  • Yiping Tai
  • Nora Fung-Yee Tam
  • Yunv Dai
  • Yang Yang
  • Jianhua Lin
  • Ran Tao
  • Yufen Yang
  • Jiaxi Wang
  • Rui Wang
  • Wenda Huang
  • Xiaodan Xu
Regular Article

Abstract

Aims

Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems.

Methods

A flask-scale experiment (100 and 300 μg/L ML) incorporating Juncus effuses and Canna indica was used to identify the root adsorption, rhizobacterial influences, and plant uptake responsible for the ML (i.e., anhydroerythromycin A, roxithromycin, clarithromycin and tilmicosin) removal.

Results

Total ML removal rates due to rhizosphere processes were respectively 43.7–67.6% and 44.3–82.2% at 100 and 300 μg/L ML. J. effuses removed ML more effectively than C. indica (P < 0.05). The relative contribution of rhizospheric pathways to remove all ML followed the order: root sorption > rhizobacterial influence > plant uptake (P < 0.01). Sorption and rhizobacterial activity were important removal pathways in wetland plant microcosms, accounting for 36.5–72.8% and 20.5–54.2% of the total rhizosphere associated removal of ML, respectively.

Conclusions

Root sorption and rhizobacterial influence were the main rhizospheric pathways of ML removal in aquatic plant systems. Fe plaque on the root surface, rhizobacterial number and bacterial activity play significant roles in the removal of target pollutants.

Keywords

Macrolides Aquatic plant system Rhizospheric pathway Root sorption Rhizobacterial activity 

Supplementary material

11104_2017_3359_MOESM1_ESM.docx (855 kb)
ESM 1(DOCX 854 kb)

References

  1. Amils R, Fuente D, Rodriguez N, Zuluaga J, Menéndez N, Tornero J (2007) Composition, speciation and distribution of iron minerals in Imperata Cylindrica. Plant Physiol Biochem 45:335–340. doi:10.1016/j.plaphy.2007.03.020 CrossRefPubMedGoogle Scholar
  2. Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–232CrossRefGoogle Scholar
  3. Blamey F, Pax C, Wehr JB, Wang P, Menzies NW, Kopittke PM (2014) Kinetics and mechanisms of cowpea root adaptation to changes in solution calcium. Plant Soil 379:301–314. doi:10.1007/s11104-014-2065-1 CrossRefGoogle Scholar
  4. Brix H, Koottatep T, Laugesen C (2007) Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands. Water Sci Technol 56:69–74. doi:10.2166/wst.2007.528 CrossRefPubMedGoogle Scholar
  5. Burken JG, Schnoor JL (1997) Uptake and metabolism of Atrazine by poplar trees. Environ Sci Technol 31(5):1399–1406CrossRefGoogle Scholar
  6. Chehrenegar B, Hu J, Ong SL (2016) Active removal of ibuprofen by money plant enhanced by ferrous ions. Chemosphere 144:91–96. doi:10.1016/j.chemosphere.2015.08.060 CrossRefPubMedGoogle Scholar
  7. Chen C, Dixon J, Turner F (1980) Iron coatings on rice roots: morphology and models of development. Soil Sci Soc Am J 44:1113–1119. doi:10.2136/sssaj1980.03615995004400050046x CrossRefGoogle Scholar
  8. Chen Y, Wen Y, Zhou Q, Vymazal J (2014) Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment. Water Res 63:158–167. doi:10.1016/j.watres.2014.06.015 CrossRefPubMedGoogle Scholar
  9. Chen Y, Wen Y, Zhou J, Zhou Q, Vymazal J, Kuschk P (2015) Transformation of chloroform in model treatment wetlands: from mass balance to microbial analysis. Environ Sci Technol 49:6198–6205. doi:10.1021/es506357e CrossRefPubMedGoogle Scholar
  10. Cheng H, Wang M, Hung MW, Ye Z (2014) Does radial oxygen loss and iron plaque formation on roots alter cd and Pb uptake and distribution in rice plant tissues? Plant Soil 375:137–148. doi:10.1007/s11104-013-1945-0 CrossRefGoogle Scholar
  11. Choo S, Um Y, Han SO, Woo HM (2016) Engineering of Corynebacterium glutamicum to utilize methyl acetate, a potential feedstock derived by carbonylation of methanol with CO. J Biotechnol 224:47–50CrossRefPubMedGoogle Scholar
  12. Dan A, Yang Y, Dai YN, Chen CX, Wang SY, Tao R (2013) Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands. Bioresour Technol 146:363–370. doi:10.1016/j.biortech.2013.07.050 CrossRefPubMedGoogle Scholar
  13. Datta R, Das P, Smith SP, Pravin RDM, Reddy R, Sarkar D (2013) Phytoremediation potential of vetiver grass [chrysopogon zizanioides(L.)] for tetracycline. Int J Phytorem 15:343–351. doi:10.1080/15226514.2012.702803 CrossRefGoogle Scholar
  14. Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329. doi:10.1021/es801751x CrossRefPubMedGoogle Scholar
  15. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109(Supplement 1):163–168CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep-UK 7:1–8. doi:10.1038/srep44641 CrossRefGoogle Scholar
  17. Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35(6):987–1004. doi:10.1016/j.ecoleng.2008.12.030 CrossRefGoogle Scholar
  18. Feitosa-Felizzola J, Hanna K, Chiron S (2009) Adsorption and transformation of selected human-used macrolide antibacterial agents with iron (III) and manganese (IV) oxides. Environ Pollut 157(4):1317–1322. doi:10.1016/j.envpol.2008.11.048 CrossRefPubMedGoogle Scholar
  19. Gagnon V, Chazarenc F, Brisson J (2012) Effect of plant species on water quality at the outlet of a sludge treatment wetland. Water Res 46(16):5305–5315. doi:10.1016/j.watres.2012.07.007 CrossRefPubMedGoogle Scholar
  20. Gros M, Petrovic M, Barcelo D (2007) Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro river basin (Northeast Spain). Environ Toxicol Chem 26:1553–1562. doi:10.1897/06-495R.1 CrossRefPubMedGoogle Scholar
  21. Grujic S, Vasiljevic T, Lausevic M (2009) Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry. J Chromatogr A 1216:4989–5000. doi:10.1016/j.chroma.2009.04.059 CrossRefPubMedGoogle Scholar
  22. Gujarathi NP, Haney BJ, Linden JC (2005) Phytoremediation potential of Myriophyllum Aquaticum and Pista Stratiotes to modify antibiotic growth promoters, tetracycline, oxytetracycline, in aqueous wastewater systems. Int J Phytorem 7:99–112. doi:10.1080/16226510590950405 CrossRefGoogle Scholar
  23. Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63(10):1744–1753CrossRefPubMedGoogle Scholar
  24. Hadibarata T, Zubir M, Rubiyatno CT (2013) Microbial transformation and sorption of anthracene in liquid culture. Bioprocess Biosyst Eng 36:1229–1233. doi:10.1007/s00449-012-0850-x CrossRefPubMedGoogle Scholar
  25. Hamdan I (2003) Comparative in-vitro investigations of the interaction between some macrolides and cu (II), Zn (II) and Fe (II). Pharmazie 58:223–224PubMedGoogle Scholar
  26. Hernando MD, Mezcua M, Fernandez-Albá AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342. doi:10.1016/j.talanta.2005.09.037 CrossRefPubMedGoogle Scholar
  27. Hijosa-Valsero M, Fink G, Schlüsener MP, Sidrach-Cardona R, Martín-Villacorta R, Ternes T, Bécares E (2011) Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere 83(5):713–719. doi:10.1016/j.chemosphere.2011.02.004 CrossRefPubMedGoogle Scholar
  28. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. University of California, Berkeley, p 39Google Scholar
  29. Jelić A, Petrović M, Barceló D (2009) Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. Talanta 80:363–371. doi:10.1016/j.talanta.2009.06.077 CrossRefPubMedGoogle Scholar
  30. Konnerup D, Brix H (2010) Nitrogen nutrition of Canna indica: effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activityand N uptake rates. Aquat Bot 92:142–148. doi:10.1016/j.aquabot.2009.11.004 CrossRefGoogle Scholar
  31. Kumwimba M, Dzakpasu M, Zhu B, Muyembe D (2016) Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species. Water Air Soil Pollut 227:405–418. doi:10.1007/s11270-016-3105-7 CrossRefGoogle Scholar
  32. LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Technol 45:9543–9549. doi:10.1021/es202775r CrossRefPubMedGoogle Scholar
  33. Li L, Yang Y, Tam N, Yang L, Mei X, Yang F (2013) Growth characteristics of six wetland plants and their influences on domestic wastewater treatment efficiency. Ecol Eng 60:382–392. doi:10.1016/j.ecoleng.2013.09.044 CrossRefGoogle Scholar
  34. Liu W, Zhu Y, Hu Y, Williams P, Gault A, Meharg A, Charnock J, Smith F (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza Sativa L.) Environ Sci Technol 40:5730–5736. doi:10.1021/es060800v CrossRefPubMedGoogle Scholar
  35. Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF (2009) Effects of six selected antibiotics on plant growth and oil microbial and enzymatic activities. Environ Pollut 157:1636–1642. doi:10.1016/j.envpol.2008.12.021 CrossRefPubMedGoogle Scholar
  36. Liu L, Liu Y, Liu C, Wang Z, Dong J, Zhu G, Huang X (2013) Potential effect and accumulation of veterinary antibiotics in Phragmites Australis under hydroponic conditions. Ecol Eng 53:138–143. doi:10.1016/j.ecoleng.2012.12.033 CrossRefGoogle Scholar
  37. Makris KC, Shakya M, Datta R, Sarkar D, Pachanoor D (2007) High uptake of 2,4,6-trinitrotoluene by vetiver grass potential for phytoremediation? Environ Pollut 146:1–4. doi:10.1016/j.envpol.2006.06.020 CrossRefPubMedGoogle Scholar
  38. Managaki S, Murata A, Takada H, Tuyen B, Chiem N (2007) Distribution of macrolides, sulfonamides and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong delta. Environ Sci Technol 41:8004–8010. doi:10.1021/es0709021 CrossRefPubMedGoogle Scholar
  39. Margesin R, Schinner F (1997) Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl Microbiol and Biot 47:462–468. doi:10.1007/s002530050957 CrossRefGoogle Scholar
  40. Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346. doi:10.1016/S0045-6535(99)00218-0 CrossRefPubMedGoogle Scholar
  41. Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40(18):5811–5816. doi:10.1021/es0607741 CrossRefPubMedGoogle Scholar
  42. Matamoros V, García J, Bayona JM (2008) Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res 42(3):653–660. doi:10.1016/j.watres.2007.08.016 CrossRefPubMedGoogle Scholar
  43. Matamoros V, Nguyen LX, Arias CA, Salvadó V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88:1257–1264. doi:10.1016/j.chemosphere.2012.04.004 CrossRefPubMedGoogle Scholar
  44. Mei X, Yang Y, Tam NF, Li L, Wang YW (2014) Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Res 50:147–159. doi:10.1016/j.watres.2013.12.004 CrossRefPubMedGoogle Scholar
  45. Miao XS, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol 38(13):3533–3541. doi:10.1021/es030653q CrossRefPubMedGoogle Scholar
  46. Nielsen JL, Nielsen PH (2002) Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrate respiring conditions in activated sludge. Water Res 36:421–428. doi:10.1016/S0167-5648(02)80027-2 CrossRefPubMedGoogle Scholar
  47. Pi N, Tam N, Wong MH (2011) Formation of iron plaque on mangrove roots receiving wastewater and its role in immobilization of wastewater-borne pollutants [J]. Marine Pollut Bull 63(5):402–411. doi:10.1016/j.jhazmat.2012.02.056 CrossRefGoogle Scholar
  48. Reichel R, Rosendahl I, Peeters E, Focks A, Groeneweg J, Bierl R, Schlichting A, Amelung W, Thiele-Bruhn S (2013) Effects of slurry from sulfadiazine- (SDZ) and difloxacin- (DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biol Biochem 62:82–91. doi:10.1016/j.soilbio.2013.03.007 CrossRefGoogle Scholar
  49. Reichel R, Radl V, Rosendahl I, Albert A, Amelung W, Schloter M, Thiele-Bruhn S (2014) Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes. Appl Microbiol Biotechnol 98:6487–6495. doi:10.1007/s00253-014-5717-4 CrossRefPubMedGoogle Scholar
  50. Reichel R, Michelini L, Ghisi R, Thiele-Bruhn S (2015) Soil bacterial community response to sulfadiazine in the soil–root zone. J Plant Nutr Soil Sci 178:499–506. doi:10.1002/jpln.201400352 CrossRefGoogle Scholar
  51. Reinhold D, Vishwanathan S, Park JJ, Oh D, Michael SF (2010) Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80:687–692. doi:10.1016/j.chemosphere.2010.05.045 CrossRefPubMedGoogle Scholar
  52. Seeger EM, Reiche N, Kuschk P, Borsdorf H, Kaestner M (2011) Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands. Environ Sci Technol 45(19):8467–8474. doi:10.1021/es201536j CrossRefPubMedGoogle Scholar
  53. Shao B, Chen D, Zhang J, Wu YN, Sun CJ (2009) Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater. J Chromatogr A 1216(47):8312–8318. doi:10.1016/j.chroma.2009.08.038 CrossRefPubMedGoogle Scholar
  54. Silva-Costa C, Friães A, Ramirez M, Melo-Cristino J (2012) Differences between macrolide-resistant and -susceptible streptococcus pyogenes: importance of clonal properties in addition to antibiotic consumption. Antimicrob Agents Ch 56(11):5661–5666. doi:10.1128/AAC.01133-12 CrossRefGoogle Scholar
  55. Su HC, Ying GG, Tao R, Zhang RQ, Zhao JL, Liu YS (2012) Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coliisolated from Dongjiang River, South China. Environ Pollut 169:42–49. doi:10.1016/j.envpol.2012.05.007 CrossRefPubMedGoogle Scholar
  56. Tang X, Wang S, Yang Y, Tao R, Dai Y, A D (2015) Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem Eng J 275, 198–205. doi:10.1016/j.cej.2015.04.029
  57. Tao R, Ying GG, Su HC, Zhou HW, Sidhu JPS (2010) Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the pearl rivers in South China. Environ Pollut 158:2101–2109. doi:10.1016/j.envpol.2010.03.004 CrossRefPubMedGoogle Scholar
  58. Taylor GJ, Crowder AA (1983) Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot 70(8):1254–1257CrossRefGoogle Scholar
  59. Taylor G, Crowder A, Rodden R (1984) Formation and morphology of an iron plaque on the roots of Typha Latifolia L. grown in solution culture. Am J Bot 71:666–675. doi:10.2307/2443363 CrossRefGoogle Scholar
  60. Tront JM, Saunders FM (2006) Role of plant activity and contaminant speciation in aquatic plant assimilation of 2, 4, 5-trichlorophenol. Chemosphere 64:400–407. doi:10.1016/j.chemosphere.2005.12.025 CrossRefPubMedGoogle Scholar
  61. Vasiliadou I, Molina R, Martínez F, Melero J (2013) Biological removal of pharmaceutical and personal care products by a mixed microbial culture: sorption, desorption and biodegradation. Biochem Eng J 81:108–119. doi:10.1016/j.bej.2013.10.010 CrossRefGoogle Scholar
  62. Weber K, Mitzel M, Slawson R (2011) Effect of ciprofloxacin on microbiological development in wetland mesocosms. Water Res 45(10):3185–3196. doi:10.1016/j.watres.2011.03.042 CrossRefPubMedGoogle Scholar
  63. Weng SS, Ku KL, Lai HT (2012) The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics. Bioresour Technol 113:259–264. doi:10.1016/j.biortech.2011.12.111 CrossRefPubMedGoogle Scholar
  64. Wu H, Wang X, He X, Zhang S, Liang R, Shen J (2017) Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci Total Environ 598:697–703. doi:10.1016/j.scitotenv.2017.04.150 CrossRefPubMedGoogle Scholar
  65. Xu W, Zhang G, Li X et al (2007) Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res 41(19):4526–4534. doi:10.1016/j.watres.2007.06.023 CrossRefPubMedGoogle Scholar
  66. Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Liu YS (2011) Spatial and seasonal distribution of selected antibiotics in surface waters of the pearl rivers. China J Environ Sci Health B 46(3):272–280. doi:10.1080/03601234.2011.540540 CrossRefPubMedGoogle Scholar
  67. Yang J, Tam NFY, Ye Z (2014) Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation. Plant Soil 374:815–828. doi:10.1007/s11104-013-1922-7 CrossRefGoogle Scholar
  68. Ye Z, Weinberg H, Meyer M (2007) Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Analyt Chem 79:1135–1144. doi:10.1021/ac060972a CrossRefGoogle Scholar
  69. Zhang DQ, Hua T, Gersberg RM, Zhu J, Ng W, Tan SK (2013) Fate of caffeine in mesocosms wetland planted with Scirpus Validus. Chemosphere 90:1568. doi:10.1016/j.chemosphere.2012.09.059 CrossRefPubMedGoogle Scholar
  70. Zhao C, Xie H, Xu J, Xu X, Zhang J, Hu Z, Liu C, Liang S, Wang Q (2015) Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants. Sci Total Environ 505:633–639. doi:10.1016/j.scitotenv.2014.10.053 CrossRefPubMedGoogle Scholar
  71. Zhou Q, Wu Z, Cheng S, He F, Fu G (2005) Enzymatic activities in constructed wetlands and di-n-phthalate (DBP) biodegradation. Soil Biol Biochem 37:1454–1459. doi:10.1016/j.soilbio.2005.01.003 CrossRefGoogle Scholar
  72. Zurita F, De Anda J, Belmont MA (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol Eng 35:861–869. doi:10.1016/j.ecoleng.2008.12.026 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yiping Tai
    • 1
    • 2
  • Nora Fung-Yee Tam
    • 1
    • 2
  • Yunv Dai
    • 1
    • 2
  • Yang Yang
    • 1
    • 2
  • Jianhua Lin
    • 1
    • 2
  • Ran Tao
    • 1
    • 2
  • Yufen Yang
    • 1
    • 2
  • Jiaxi Wang
    • 1
    • 2
  • Rui Wang
    • 1
    • 2
  • Wenda Huang
    • 1
    • 2
  • Xiaodan Xu
    • 1
    • 2
  1. 1.Research Center of HydrobiologyJinan UniversityGuangzhouChina
  2. 2.Research Centre of Tropic and Subtropic Aquatic Ecological EngineeringMinistry of EducationGuangzhouChina

Personalised recommendations