Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory

Abstract

Aims

Studies have shown that arbuscular mycorrhizal (AM) fungi can reduce the performance of typically detrimental root feeding insects, yet the mechanisms remain unclear. This study aimed to investigate the effects of different sources of AM inocula on plant resistance to a root feeding insect in two different soils with different silicon (Si) concentrations.

Methods

Sugarcane (Saccharum spp. hybrid) was grown in high or low Si soil; plants were treated with either an inoculum comprising the native AM fungi, a commercial AM fungal inoculum or with no AM fungi. Root herbivore (Dermolepida albohirtum) performance was measured in a feeding assay.

Results

In the low Si soil AM fungi increased root Si concentrations and reduced root herbivore performance. Both commercial and native AM treatments increased root Si and also reduced root herbivore growth rates by 107% and 81%, respectively. AM colonisation positively correlated with root Si concentrations. Distinct from this, in the high Si soil AM fungi had no impact on root Si or root herbivore growth. However, root consumption was reduced; a response independent of Si concentrations.

Conclusions

Our study suggests AM fungi can enhance Si based plant defences against root herbivores, but also highlights that interactions between AM fungi and root herbivores involves multiple mechanisms requiring further research.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allsopp PG (2010) Integrated management of sugarcane whitegrubs in Australia: an evolving success. Annu Rev Entomol 55:329–349

    CAS  Article  PubMed  Google Scholar 

  2. Anda CCO, Opfergelt S, Declerck S (2016) Silicon acquisition by bananas (c.V. Grande Naine) is increased in presence of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Plant Soil 409:77–85

    Article  Google Scholar 

  3. Babikova Z, Gilbert L, Bruce TJA et al (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  4. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. ArXiv E-prints arXiv:1406.5823v1

  5. Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218

    Article  PubMed  Google Scholar 

  6. Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167:141–152

    PubMed  Google Scholar 

  7. Blossey B, Hunt-Joshi TR (2003) Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu Rev Entomol 48:521–547

    CAS  Article  PubMed  Google Scholar 

  8. Cameron DD, Neal AL, van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503

    CAS  Article  Google Scholar 

  10. Cooke J, DeGabriel JL, Hartley SE (2016) The functional ecology of plant silicon: geoscience to genes. Funct Ecol 30:1270–1276

    Article  Google Scholar 

  11. Currie AF, Murray PJ, Gange AC (2011) Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi? Appl Soil Ecol 47:77–83

    Article  Google Scholar 

  12. Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, MN, USA, pp 133–151

    Google Scholar 

  13. Deshmukh R, Bélanger RR (2015) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30:1277–1285

    Article  Google Scholar 

  14. Drüge U, Schonbeck F (1993) Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J Plant Physiol 141:40–48

    Article  Google Scholar 

  15. Fox J, Weisberg S (2011) An R companion to applied regression, Second edn. Sage Publications, Thousand Oaks

    Google Scholar 

  16. Frew A, Johnson SN (2016) A comparison of canefield soil types on root herbivore performance and feeding. In: Johnson SN (ed) Invertebrate ecology in Australasian grasslands. Proceedings of the Ninth ACGIE. Western Sydney University, Hawkesbury, pp 188–190

    Google Scholar 

  17. Frew A, Powell JR, Sallam N et al (2016) Trade-offs between silicon and phenolic defenses may explain enhanced performance of root herbivores on phenolic-rich plants. J Chem Ecol 42:768–771

    CAS  Article  PubMed  Google Scholar 

  18. Gange AC (2001) Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol 150:611–618

    Article  Google Scholar 

  19. Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    CAS  Article  PubMed  Google Scholar 

  20. Hause B, Maier W, Miersch O et al (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hiltpold I, Demarta L, Johnson SN et al (2016) Silicon and other essential element composition in roots using X-ray fluorescence spectroscopy: a high throughput approach. In: Johnson SN (ed) Invertebrate ecology in Australasian grasslands. Proceedings of the Ninth ACGIE. Western Sydney University, Hawkesbury, pp 191–196

    Google Scholar 

  22. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  Article  PubMed  Google Scholar 

  23. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    CAS  Article  PubMed  Google Scholar 

  24. Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    CAS  Article  Google Scholar 

  25. Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535

    CAS  Article  PubMed  Google Scholar 

  26. Johnson SN, Benefer CM, Frew A et al (2016a) New frontiers in belowground ecology for plant protection from root-feeding insects. Appl Soil Ecol 108:96–107

    Article  Google Scholar 

  27. Johnson SN, Erb M, Hartley SE (2016b) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418

    Article  PubMed  Google Scholar 

  28. Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109

    Article  Google Scholar 

  29. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    CAS  Article  PubMed  Google Scholar 

  30. Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66:54–60

    CAS  Article  Google Scholar 

  31. Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  32. Kothari SK, Marschner H, Römheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645

    CAS  Article  Google Scholar 

  33. Li T, Hu Y-J, Hao Z-P et al (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    CAS  Article  PubMed  Google Scholar 

  34. Liu J, Maldonado-Mendoza I, Lopez-Meyer M et al (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    CAS  Article  PubMed  Google Scholar 

  35. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    CAS  Article  PubMed  Google Scholar 

  36. Massey FP, Hartley SE (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78:281–291

    Article  PubMed  Google Scholar 

  37. McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  38. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  Article  PubMed  Google Scholar 

  39. Reidinger S, Ramsey MH, Hartley SE (2012) Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol 195:699–706

    CAS  Article  PubMed  Google Scholar 

  40. Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  41. Revillini D, Gehring CA, Johnson NC (2016) The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct Ecol 30:1086–1098

    Article  Google Scholar 

  42. Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186

    CAS  Article  Google Scholar 

  43. Salminen J-P, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  44. Schechter SP, Bruns TD (2012) Edaphic sorting drives arbuscular mycorrhizal fungal community assembly in a serpentine/non-serpentine mosaic landscape. Ecosphere 3:1–24

    Article  Google Scholar 

  45. Slansky FJ (1985) Food utilization by insects: interpretation of observed differences between dry weight and energy efficiencies. Entomol Exp Appl 39:47–60

    Article  Google Scholar 

  46. Smith SE, Read DJ (2010) Mycorrhizal Symbiosis. Academic Press, Amsterdam, the Netherlands & Boston

  47. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    CAS  Article  PubMed  Google Scholar 

  48. Strömberg CAE, Di Stilio VS, Song Z (2016) Functions of phytoliths in vascular plants: an evolutionary perspective. Funct Ecol 30:1286–1297

    Article  Google Scholar 

  49. Tao L, Ahmad A, de Roode JC, Hunter MD (2016) Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. J Ecol 104:561–571

    Article  Google Scholar 

  50. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  51. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wheeler B, Torchiano M (2016) lmPerm: permutation tests for linear models. R package version 2.1.0. https://CRAN.R-project.org/package=lmPerm

  53. Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  54. Wu Q-S, Xia R-X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    CAS  Article  PubMed  Google Scholar 

  55. Zhang R-Q, Zhu H-H, Zhao H-Q, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170:74–79

    CAS  Article  PubMed  Google Scholar 

  56. Zvereva EL, Kozlov MV (2011) Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 169:441–452

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the teams at Sugar Research Australia Limited and the Hawkesbury Institute for the Environment for their support, particularly Andrew Gherlenda, Lisa Derby and Allen Eaton. Funding was provided by Sugar Research Australia Ltd. (project no. 2014/104).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam Frew.

Additional information

The raw datasets analysed during the current study are available from the corresponding author on reasonable request.

Responsible Editor: Duncan D. Cameron.

Electronic supplementary material

ESM 1

(DOCX 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frew, A., Powell, J.R., Allsopp, P.G. et al. Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant Soil 419, 423–433 (2017). https://doi.org/10.1007/s11104-017-3357-z

Download citation

Keywords

  • Arbuscular mycorrhizal fungi
  • Insect herbivory
  • Root defences
  • Silicon
  • Sugarcane