Skip to main content
Log in

Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Noccaea caerulescens is a model plant for understanding metal hyperaccumulation as well as being a potential source of cultivars for phytoextraction. Sixty populations from non-metallicolous (NM), calamine (CAL) and serpentine (SER) edaphic groups were phenotyped in order to more extensively characterise the species and to detect candidates for cultivar selection.

Methods

15 plants per population were grown until fruit maturity in a greenhouse on a homogeneous soil spiked with Cd, Ni and Zn. Development, growth and ionome variables were measured.

Results

NM and SER edaphic groups seem to be similar, with plants producing fewer inflorescences and shoot biomass, flowering later, reaching maturity sooner and accumulating more transition metals than CAL plants. Three geographically structured CAL subgroups could be distinguished according to their shoot Cd/Zn ratio. Only CAL populations from the south east of the Massif Central were observed to hyperaccumulate Cd. At the species level, the Ni and Zn contents were strongly correlated. Nickel accumulation was also closely associated to that of Mg and Ca. The NM and SER edaphic groups both hyperaccumulated Ni and Zn. Biomass production was not correlated to metal contents, suggesting no trade-off between these traits.

Conclusions

The high natural variability of N. caerulescens’ traits and its accumulation potential could be exploited for the production of phytoextraction cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler D (2005) vioplot: Violin Plot. R package version 0.2. http://CRAN.R-project.org/package=vioplot

  • Assunção AGL, Martins PDC, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226. doi:10.1111/j.1365-3040.2001.00666.x

    Article  Google Scholar 

  • Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003a) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003b) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68. doi:10.1111/j.1469-8137.1994.tb04259.x

    Article  CAS  Google Scholar 

  • Banásová V, Horak O, Nadubinská M, ÄŚiamporová M, Lichtscheidl I (2008) Heavy metal content in Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int J Environ Pollut 33:133–145

    Article  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127. doi:10.1080/15226514.2013.862204

    Article  CAS  PubMed  Google Scholar 

  • Barbaroux R, Mercier G, Blais JF, Morel JL, Simonnot MO (2011) A new method for obtaining nickel metal from the hyperaccumulator plant Alyssum murale. Sep Purif Technol 83:57–65

    Article  Google Scholar 

  • Basic N, Keller C, Fontanillas P, Vittoz P, Besnard G, Galland N (2006) Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biol:64–72

  • Brachi B, Villoutreix R, Faure N, Hautekèete N, Piquot Y, Pauwels M, Roby D, Cuguen J, Bergelson J, Roux F (2013) Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana. Mol Ecol 22:4222–4240. doi:10.1111/mec.12396

    Article  CAS  PubMed  Google Scholar 

  • Brown SL, Angle JS, Chaney RL, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133. doi:10.2136/sssaj1995.03615995005900010020x

    Article  CAS  Google Scholar 

  • Chardot V, Echevarria G, Gury M, Massoura S, Morel J (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7–21

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Dechamps C, Roosens NH, Cl H, Meerts P (2005) Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on cd contaminated soil. Plant Soil 273:327–335

    Article  CAS  Google Scholar 

  • Dechamps C, Elvinger N, Meerts P, Lefèbvre C, EscarrĂ© J, Colling G, Noret N (2011) Life history traits of the pseudometallophyte Thlaspi caerulescens in natural populations from northern Europe. Plant Biol 13:125–135

    Article  PubMed  Google Scholar 

  • Deng T-H-B, Cloquet C, Tang Y-T, Sterckeman T, Echevarria G, Estrade N, Morel J-L, Qiu R-L (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933. doi:10.1021/es5020955

    Article  CAS  PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Escande V, Olszewski TK, Grison C (2014) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction. C R Chim 17:731–737. doi:10.1016/j.crci.2013.09.009

    Article  CAS  Google Scholar 

  • EscarrĂ© J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437. doi:10.1046/j.1469-8137.2000.00599.x

    Article  Google Scholar 

  • EscarrĂ© J, Lefèbvre C, FrĂ©rot H, Mahieu S, Noret N (2013) Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea Caerulescens populations, cultivated in different growth media. Plant Soil 370:197–221. doi:10.1007/s11104-013-1618-z

    Article  Google Scholar 

  • FrĂ©rot H, Lefebvre C, Petit C, Collin C, Dos Santos A, Escarre J (2005) Zinc tolerance and hyperaccumulation in F1 and F2 offspring from intra and interecotype crosses of Thlaspi caerulescens. New Phytol 165:111–119

    Article  PubMed  Google Scholar 

  • Gebert M, Meschenmoser K, Svidová S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21:4018–4030. doi:10.1105/tpc.109.070557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonneau C (2014) Distribution, Ă©cologie et Ă©volution de l’hyperaccumulation des Ă©lĂ©ments en traces par Noccaea caerulescens. École Doctorale « Ressources ProcĂ©dĂ©s Produits Environnement ». UniversitĂ© de Lorraine.

  • Gonneau C, Genevois N, FrĂ©rot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287. doi:10.1007/s11104-014-2208-4

    Article  CAS  Google Scholar 

  • Gonneau C, Noret N, GodĂ© C, FrĂ©rot H, Sirguey C, Sterckeman T, Pauwels M (2017) Demographic history of the trace metal hyperaccumulator Noccaea caerulescens (J. Presl and C. Presl) F. K. Mey. in Western Europe. Mol Ecol 29:904–922

    Article  Google Scholar 

  • Halimaa P, Lin Y-F, Ahonen VH, Blande D, Clemens S, Gyenesei A, Häikiö E, Kärenlampi SO, Laiho A, Aarts MGM, Pursiheimo J-P, Schat H, Schmidt H, Tuomainen MH, Tervahauta AI (2014) Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Environ Sci Technol 48:3344–3353. doi:10.1021/es4042995

    Article  CAS  PubMed  Google Scholar 

  • Hammer D, Keller C (2003) Phytoextraction of cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage 19:144–149. doi:10.1111/j.1475-2743.2003.tb00295.x

    Article  Google Scholar 

  • Jimenez-Ambriz G, Petit C, Bourrie I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thlaspi Caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215. doi:10.1111/j.1469-8137.2006.01923.x

    Article  CAS  PubMed  Google Scholar 

  • Keller C, Diallo S, Cosio C, Basic N, Galland N (2006) Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Funct Plant Biol 33:673–684. doi:10.1071/FP05217

    Article  CAS  Google Scholar 

  • Koch MA, German D (2013) Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Front Plant Sci 4. doi:10.3389/fpls.2013.00267

  • Koopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    Article  CAS  PubMed  Google Scholar 

  • Lebreton J-D, Klein E, Gimenez O, Rousset F (2009) Statistiques pour la biologie Ă©volutive. In: Thomas F, Lefevre T, Raymond M (eds) Biologie Ă©volutive. De Boeck, Bruxelles

    Google Scholar 

  • Li MY, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil V249:107–115

    Article  Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GE (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao F-J, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovy L (2012) Hyperaccumulation du Cd par Noccaea caerulescens: cinĂ©tique, rĂ©partition et prĂ©diction. Ecole Doctorale Ressources, ProcĂ©dĂ©s, Produits et Environnement. UniversitĂ© de Lorraine, Vandoeuvre-lès-Nancy.

  • Lovy L, Latt D, Sterckeman T (2013) Cadmium uptake and partitioning in the hyperaccumulator Noccaea caerulescens exposed to constant cd concentrations throughout complete growth cycles. Plant soil: 345–354.

  • Maathuis FJ (2007) Transport across plant membranes. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell Publishing, Oxford

    Google Scholar 

  • Maechler M (2015) diptest: Hartigan's dip test statistic for unimodality – Corrected. R Package Version 0.75–7.

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  PubMed  Google Scholar 

  • Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231. doi:10.1023/a:1009717619579

    Article  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13. doi:10.1093/aob/mcn063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Zambrano MC, Ma JF, Kochian LV (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in cd hyperaccumulation. Plant J 78:398–410. doi:10.1111/tpj.12480

    Article  CAS  PubMed  Google Scholar 

  • Molitor M, Dechamps C, Gruber W, Meerts P (2005) Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. New Phytol 165:503–512

    Article  PubMed  Google Scholar 

  • Rees F (2014) MobilitĂ© des mĂ©taux dans les systèmes sol-plante-biochar. UniversitĂ© de Lorraine

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

    Article  CAS  Google Scholar 

  • Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501. doi:10.1111/j.1365-313X.2000.00895.x

    Article  CAS  PubMed  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea Caerulescens subsp. caerulescens. Environ Exp Bot 77:156–164

    Article  CAS  Google Scholar 

  • Welch RM, Norvell WA (1999) Mechanisms of cadmium uptake, translocation and deposition in plants. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zhao F-J, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Région Lorraine and the FEDER (European Union) for funding this research carried out within the framework of the LORVER project set up by Jean-Louis Morel and coordinated by Sophie Guimont and Marie-Odile Simonnot. They are grateful to Stéphane Colin, Jean-Claude Bégin, Christophe Bailly and Adeline Motz for their technical help and to Philippe Antonetti (National Botanical Conservatory from the Massif Central), Olivier Bardet (National Botanical Conservatory from the Bassin Parisien), Yoric Ferrez (National Botanical Conservatory from Franche Comté), Thierry Mahevas and Guy Seznec (Nancy Conservatory and Botanical Gardens) for their help in locating the N. caerulescens populations. The authors also thank Mark Aarts, Guillaume Besnard, José Escarré, Hélène Frérot, Markus Koch, Nausicaa Noret, Maxime Pauwels for providing N. caerulescens seeds. They are grateful to Maxime Pauwels for his advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Sterckeman.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

ESM

(XLSX 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterckeman, T., Cazes, Y., Gonneau, C. et al. Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 418, 523–540 (2017). https://doi.org/10.1007/s11104-017-3311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3311-0

Keywords

Navigation