Skip to main content

Advertisement

Log in

Redefining the dose of the entomopathogenic fungus Metarhizium brunneum (Ascomycota, Hypocreales) to increase Fe bioavailability and promote plant growth in calcareous and sandy soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Entomopathogenic mitosporic ascomycetes Beauveria, Metarhizium and Isaria sp. are commonly used for pest control but can also serve other, lesser known functions such as increasing nutrient bioavailability or promote plant growth. The objective of this work was to identify the doses of entomopathogenic fungi (EF) to be applied to soil in order to modify iron (Fe) uptake by plants and promote their growth.

Methods

We used an in vitro assay to assess the ability of Beauveria bassiana, Metarhizium brunneum and Isaria farinosa to mobilize Fe from nine Fe oxides differing in composition, particle size and crystallinity, including ferrihydrite, hematite, goethite and magnetite. We also conducted an in vivo assay by applying five different doses (viz., 0, 5 × 102, 5 × 104, 5 × 106 and 5 × 108 conidia ml−1) of a conidial suspension of M. brunneum to the surface of a calcareous soil, which induced Fe chlorosis and a non–calcareous soil which did not induce chlorosis to explore the ability of the fungus on improving Fe nutrition and plant growth of sorghum and sunflower plants.

Results

In the in vitro assay, all three EF increased Fe availability differently depending on particle size and crystallinity, and I. farinosa and B. bassiana increased the pH of the culture medium, whereas M. brunneum did not produce a great effect. In the in vivo assay, the highest dose (5 × 108 conidia ml−1) of M. brunneum alleviated Fe chlorosis symptoms of sorghum plants grown in the calcareous soil, and the two highest doses (5 × 106 and 5 × 108 conidia ml−1) increased plant height and inflorescence production of sunflower grown in both soils.

Conclusions

The observed benefits of EF on plant growth and nutrition provide support for more sustainable and cost–effective use of these biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bayat F, Mirlohi A, Khodambashi M (2009) Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russ J Plant Physiol 56:510–516. doi:10.1134/S1021443709040104

    Article  CAS  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Ubiquity of insect–derived nitrogen transfer to plants by endophytic insect–pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80:1553–1560

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidochka MJ, Kamp AM, Lavender TM, Dekoning J, de Cross JNA (2001) Habitat association in two genetic groups of the insect–pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl Environ Microbiol 67:1335–1342. doi:10.1128/AEM.67.3.1335-1342.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouyoucos G, McCool M (1915) A new method of measuring the concentration of the soil solution around the soil particles. Science 42:507–508. doi:10.1126/science.42.1084.507

    Article  CAS  PubMed  Google Scholar 

  • Bruck DJ (2005) Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biol Control 32:155–163. doi:10.1016/j.biocontrol.2004.09.003

    Article  Google Scholar 

  • Brunauer S, Emmet P, Teller E (1938) Adsorption of gases in multimolecular layers. J am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • Colombo C, Barrón V, Torrent J (1994) Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochim Cosmochim Acta 58:1261–1269. doi:10.1016/0016-7037(94)90380-8

    Article  CAS  Google Scholar 

  • de Santiago A, Quintero J, Aviles M, Delgado A (2009) Effect of Trichoderma asperellum strain T34 on iron nutrition in white lupin. Soil Biol Biochem 41:2453–2459. doi:10.1016/j.soilbio.2009.07.033

    Article  Google Scholar 

  • Diaz I, del Campillo M, Cantos M, Torrent J (2009) Iron deficiency symptoms in grapevine as affected by the iron oxide and carbonate contents of model substrates. Plant Soil 322:393–302. doi:10.1007/s11104-009-9916-1

    Article  Google Scholar 

  • Garrido–Jurado I, Torrent J, Barron V, Corpas A, Quesada–Moraga E (2011) Soil properties affect the availability, movement, and virulence of entomopathogenic fungi conidia against puparia of Ceratitis capitata (Diptera: Tephritidae). Biol Control 58:277–285. doi:10.1016/j.biocontrol.2011.05.017

    Article  Google Scholar 

  • Goettel MS, Inglis GD (1997) Fungi: hyphomycetes. In: Lacey L (ed) Manual of laboratory techniques in insect pathology. Academic Press, London, p 213–247

  • Gurulingappa P, Sword GA, Murdoch G, Mcgee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41. doi:10.1016/j.biocontrol.2010.06.011

    Article  Google Scholar 

  • Jirakkakul J, Cheevadhanarak S, Chutrakul C, Senachak J, Buajarern T, Tanticharoen M, Amnuaykanjanasin A (2015) Tenellin Acts as an Iron Chelator to Prevent Iron–Generated Reactive Oxygen Species Toxicity in the Entomopathogenic Fungus Beauveria bassiana. FEMS Microbiol Lett:362. doi:10.1093/femsle/fnu032

  • Jolley VD, Brown JC (1985) Iron stress response in tomato affected by potassium and renewing nutrient solutions. J Plant Nutr 8:527–541

    Article  CAS  Google Scholar 

  • Joseph E, Cario S, Simon A, Worle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana. Front Microbiol. doi:10.3389/fmicb.2011.00270

  • Kabaluk JT, Ericsson JD (2007) Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J 99:1377–1381. doi:10.2134/agronj2007.0017N

    Article  Google Scholar 

  • Liao XG, O'Brien TR, Fang WG, St Leger RJ (2014) The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl Microbiol Biotechnol 98:7089–7096. doi:10.1007/s00253-014-5788-2

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc am J 42:421–428

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274. doi:10.1007/BF00008069

    Article  CAS  Google Scholar 

  • Mehra O, Jackson M (1960) Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clay Clay min 7:317–327

    Article  Google Scholar 

  • Mikami Y, Saito A, Miwa E, Higuchi K (2011) Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe–deficient conditions. Plant Physiol Biochem 49:513–519. doi:10.1016/j.plaphy.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2001) The release of root exudates as affected by the plant’s physiological statu. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 41–94

    Google Scholar 

  • Olsen S, Watanabe FS, Cosper HR, Larson WE, Nelson LB (1954) Residual phosphorus availabiliy in long–time rotations on calcareous soils. Soil Sci 78:141–151. doi:10.1097/00010694-195408000-00008

    Article  CAS  Google Scholar 

  • Partida–Martínez LP, Heil H (2011) The microbe–free plant: fact or artefact? Front Plant Sci 2:1–16

    Google Scholar 

  • Quesada–Moraga E, Navas–Cortes JA, EAA M, Ortiz–Urquiza A, Santiago–Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol res 111:947–966. doi:10.1016/j.mycres.2007.06.006

    Article  PubMed  Google Scholar 

  • Quesada–Moraga E, Santiago–Álvarez C, Maranhao E (2006) Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia 161:323–329

    Article  PubMed  Google Scholar 

  • Reyes I, Torrent J (1997) Citrate–ascorbate as a highly selective Extractant for poorly crystalline iron oxides. Soil Sci Soc Am J 61:1647–1654. doi:10.2136/sssaj1997.03615995006100060015x

    Article  CAS  Google Scholar 

  • Römheld V (2000) The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. J Plant Nutr 23:1629–1643

    Article  Google Scholar 

  • Salazar AM, Gerding M, France A, Campos J, Sandoval M, Becerra V (2007) Displacement of conidia of Metarhizium anisopliae var. anisopliae in columns of three soil series. Agric Tec 67:236–243

    Google Scholar 

  • Sánchez–Rodríguez AR, del Campillo MC, Quesada–Moraga E (2015) Beauveria bassiana: an entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Sci Hortic 197:193–202. doi:10.1016/j.scienta.2015.09.029

    Article  Google Scholar 

  • Sánchez–Rodríguez AR, del Campillo MC, Quesada–Moraga E (2016) The entomopathogenic fungus Metarhizium brunneum: a tool for alleviating Fe chlorosis. Plant Soil 406:295–310. doi:10.1007/s11104-016-2887-0

    Article  Google Scholar 

  • Sánchez–Rodríguez AR, Raya–Díaz S, Zamarreño AM, García–Mina JM, del Campillo MC, Quesada–Moraga E (2017) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworn (Spodoptera littoralis) larvae. Biol Control doi:10.1016/j.biocontrol.2017.01.012

  • Sasan RK, Bidochka MJ (2012) The insect–pathogenic fungus Metarhizium rebertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J bot 99:101–107. doi:10.3732/ajb.1100136

    Article  PubMed  Google Scholar 

  • Scheepmaker JWA, Butt TM (2010) Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci Tech 20:503–552. doi:10.1080/09583150903545035

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K et al (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol res 106:996–1004. doi:10.1017/S0953756202006342

    Article  CAS  Google Scholar 

  • Schwertmann U (1973) Use oxalate for Fe extraction from soils. Can J Soil Sci 53:244–246

    Article  CAS  Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory. Preparation and characterization. 2nd, revised ed. Wiley–VCH Verlag GmbH.

  • St. Leger RJ (2008) Studies on adaptations of Metarhizium anisopliae to life in the soil. J Invertebr Pathol 98:271–276. doi:10.1016/j.jip.2008.01.007

    Article  PubMed  Google Scholar 

  • Torrent J, Barrón V, Schwertmann U (1990) Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci 54:1007–1012

    Article  Google Scholar 

  • Van Wesemael J (1955) De bepaling van het calciumcarbonaatgehalte van gronden. Chemisch Weekblad 51:35–36

    CAS  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159. doi:10.1016/j.funeco.2009.05.001

    Article  Google Scholar 

  • Vega FE, Meyling NV, Luangsa–ard JJ, Blackwell M (2012) Fungal entomopathogens. In: Insect Pathology. 2nd edn. Elsevier Science 171–220. doi:10.1016/B978-0-12-384984-7.00006-3

  • Vempati RK, Loeppert RH (1986) Synthetic ferrihydrite as a potential iron amendment in calcareous soils. J Plant Nutr 9:1039–1052. doi:10.1080/01904168609363504

    Article  CAS  Google Scholar 

  • Vempati RK, Loeppert RH (1988) Chemistry and mineralogy of Fe–containing oxides and layer silicates in relation to plant available iron. J Plant Nutr 11:1557–1574. doi:10.1080/01904168809363910

    Article  CAS  Google Scholar 

  • Wintermans J, de Mots A (1965) Spectrophotometric characteristics of chlorophyll a and b and their pheophytin in ethanol. Biochim Biophys Acta 109:448–453. doi:10.1016/0926-6585(65)90170-6

    Article  CAS  PubMed  Google Scholar 

  • Wyrebek M, Bidochka MJ (2013) Variability in the insect and plant adhesins, Mad1 and Mad2, within the fungal genus Metarhizium suggest plant adaptation as an evolutionary force. PLoS One 8. doi:10.1371/journal.pone.0059357

  • Zasoski R, Burau R (1977) A rapid nitric–perchloric acid digestion method for multi–element tissue analysis. Commun Soil Sci Plant Anal 8:425–436. doi:10.1080/00103627709366735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Innovation, Science and Enterprise Council of the Andalusian Regional Government (Project AGR– 7681). We thank the Servicio Central de Apoyo a la Investigación (SCAI) of the University of Córdoba for technical support in using its X–ray diffractometer and transmission electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rafael Sánchez–Rodríguez.

Additional information

Responsible Editor: Birgit Mitter.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raya–Díaz, S., Quesada–Moraga, E., Barrón, V. et al. Redefining the dose of the entomopathogenic fungus Metarhizium brunneum (Ascomycota, Hypocreales) to increase Fe bioavailability and promote plant growth in calcareous and sandy soils. Plant Soil 418, 387–404 (2017). https://doi.org/10.1007/s11104-017-3303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3303-0

Keywords

Profiles

  1. Antonio Rafael Sánchez–Rodríguez