Plant and Soil

, Volume 418, Issue 1–2, pp 89–114 | Cite as

Nitrogen nutrition of beech forests in a changing climate: importance of plant-soil-microbe water, carbon, and nitrogen interactions

  • Judy SimonEmail author
  • Michael Dannenmann
  • Rodica Pena
  • Arthur Gessler
  • Heinz Rennenberg
Marschner Review



For 15+ years, a beech (Fagus sylvatica L.) dominated forest on calcareous soil was studied on two opposing slopes with contrasting microclimate in Tuttlingen, Swabian Alb, Germany. The cool-humid NE aspect of these slopes represents the majority of beech forests under current climate, the warmer and drier SW aspect represents beech forests under future climate conditions. The field studies were supplemented by investigations under controlled conditions.


The research program aimed to provide a comprehensive understanding of plant-soil-microbe water, carbon and nitrogen feedbacks in a changing climate and a holistic view of the sensitivity of beech to climate change.


The results of comparative and experimental studies underpin the high vulnerability of adult beech and its natural regeneration on calcareous soil to both direct climate change effects on plant physiology and indirect effects mediated by soil biogeochemical cycles. Mechanisms contributing to this vulnerability at the ecosystem and organismic level indicate a high significance of competitive interactions of beech with other vegetation components and soil microbial communities. Obvious forest management practices such as selective felling did not necessarily counteract negative effects of climate change.


Climate extremes Competition Forest management strategies Girdling Rhizodeposition and mycorrhiza Thinning 



The research summarized in this review was funded by the Deutsche Forschungsgemeinschaft within SFB 433, FOR 788, and PAK 538, as well as contract numbers GE 1090/8-1, GE 1090/9-1, and PE 2256/1-1 and by the Swiss National Science Foundation SNF (31003A_159866). We thank the Stadt Tuttlingen, the Gemeinde Möhringen and the State Forest Services Baden-Württemberg for their continuous support of the studies at the Tuttlingen field site.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alvarez M, Huygens D, Olivares E, Saavedra I, Alberti M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activity. Physiol Plant 136:426–436PubMedCrossRefGoogle Scholar
  2. Arend M, Sever K, Pflug E, Gessler A, Schaub M (2016) Seasonal photosynthetic response of European beech to severe summer drought: limitation, recovery and post-drought stimulation. Agric For Meteorol 220:83–89CrossRefGoogle Scholar
  3. Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301CrossRefGoogle Scholar
  4. Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding on N2O emissions from soils. Phil Trans R Soc B 367:1226–1234PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bauhus J, Barthel R (1995) Mechanisms for carbon and nutrient release and retention in beech forest gaps. 2. The role of soil microbial biomass. Plant Soil 169:585–592CrossRefGoogle Scholar
  6. Bauhus J, Bartsch N (1995) Mechanisms for carbon and nutrient release and retention in beech forest gaps. 1. Microclimate, water balance and seepage water chemistry. Plant Soil 169:579–584CrossRefGoogle Scholar
  7. Bauhus J, Vor T, Bartsch N, Cowling A (2004) The effects of gaps and liming on forest floor composition and soil C and N dynamics in a Fagus sylvatica forest. Can J For Res 34:509–518CrossRefGoogle Scholar
  8. Berendse F (1981) Competition between plants with different rooting depths. II. Pot experiments. Oecologia 48:334–341PubMedCrossRefGoogle Scholar
  9. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193PubMedCrossRefGoogle Scholar
  10. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bhupinderpal-Singh NA, Lofvenius MO, Hogberg MN, Mellander PE, Hogberg P (2003) Tree root and soil heterotrophic respiration as revealed by of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296CrossRefGoogle Scholar
  12. Bilela S, Dounavi A, Fussi B, Konnert M, Holst J, Mayer H, Rennenberg H, Simon J (2012) Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. For Ecol Manag 275:60–67CrossRefGoogle Scholar
  13. Bimüller C, Naumann PS, Buegger F, Dannenmann M, Zeller B, von Lützow M, Kögel-Knabner I (2013) Rapid transfer of 15N from labeled beech leaf litter to functional soil organic matter fractions in a Rendzic Leptosol. Soil Biol Biochem 58:323–331CrossRefGoogle Scholar
  14. Bimüller C, Dannenmann M, Tejedor J, von Lützow M, Buegger F, Meier R, Haug S, Schroll R, Kögel-Knabner I (2014) Prolonged summer droughts retard soil N processing and stabilization in organo-mineral fractions. Soil Biol Biochem 68:241–251CrossRefGoogle Scholar
  15. Blagodatskaya E, Dannenmann M, Gasche R, Butterbach-Bahl K (2010) Fungal-to-bacterial ratio and N2O emission during rewetting in the forest floor and mineral soil of beech forests of different management practice and microclimate. Biogeochemistry 97:55–70CrossRefGoogle Scholar
  16. Bledsoe C, Brown D, Coleman M, Littke W, Rygiewicz P, Sangwanit U, Rogers S, Ammirati J (1989) Physiology and metabolism of ectomycorrhizae. Ann For Sci 46:697s–705s. doi: 10.1051/forest:198905ART0154 CrossRefGoogle Scholar
  17. Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci U S A 110:9374–9379PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol 91:352–356PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99:1294–1301PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boukcim H, Plassard C (2003) Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families of Picea abies. Effects of nitrogen source and ectomycorrhizal symbiosis. J Plant Physiol 160:1211–1218PubMedCrossRefGoogle Scholar
  21. Briggs RD, Hornbeck JW, Smith CT, Lemin RC, McCormack ML (2000) Long-term effects of forest management on nutrient cycling in spruce-fir forests. For Ecol Manag 138:285–299CrossRefGoogle Scholar
  22. Brumme R (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps. 3. Environmental regulation of soil respiration and nitrous oxide emissions along a microclimatic gradient. Plant Soil 169:593–600CrossRefGoogle Scholar
  23. Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547PubMedPubMedCentralCrossRefGoogle Scholar
  24. Butterbach-Bahl K, Dannenmann M (2012) Soil carbon and nitrogen interactions and biosphere-atmosphere exchange of methane and nitrous oxide. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J (eds) Recarbonization of the biosphere – ecosystems and the global carbon cycle. Springer, Dordrecht, pp 429–443CrossRefGoogle Scholar
  25. Butterbach-Bahl K, Gasche R, Breuer L, Papen H (1997) Fluxes of NO and N2O from temperate forest soils: impact on forest type, N-deposition and of liming on NO and N2O emissions. Nutr Cycl Agroecosyst 48:79–90CrossRefGoogle Scholar
  26. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils, how well do we understand the processes and their controls. Philos Trans R Soc B Biol Sci 368:1621CrossRefGoogle Scholar
  27. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161PubMedCrossRefGoogle Scholar
  28. Cavender-Bares J, Bazzaz FA (2000) Changes in drouht response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124:8–18PubMedCrossRefGoogle Scholar
  29. Charru M, Seynave I, Hervé J-C, Bertrand R, Bontemps J-D (2017) Recent growth changes in Western European forests are driven by climatic warming and structured across tree species climatic habitats. Ann For Sci. doi: 10.1007/s13595-017-0626-1
  30. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Migletta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Sousana JF, Sanz MJ, Schulze ED, Vesala T, Valentine R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  31. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, von Fischer JS, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biochem Cycl 13:6223–6645Google Scholar
  32. Corrêa A, Strasser RJ, Martins-Loução MA (2008) Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18:413–427PubMedCrossRefGoogle Scholar
  33. Coté B, Fyles JW, Djalilvand H (2002) Increasing N and P resorption efficiency and profiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Ann For Sci 59:275–281CrossRefGoogle Scholar
  34. Cotrufo MF, Miller M, Zeller B (2000) Litter decomposition. In: Schulze ED (ed) Carbon and nitrogen cycling in European Forest Ecosystems. Springer, Heidelberg, pp 276–296CrossRefGoogle Scholar
  35. Coumou D, Robinson A, Rahmstorf S (2013) Global increase in record-breaking monthly mean temperatures. Clim Chang 118:771–782CrossRefGoogle Scholar
  36. Dannenmann M, Gasche R, Ledebuhr A, Papen H (2006) Effects of forest management on soil N cycling in beech forests stocking on calcareous soils. Plant Soil 287:279–300CrossRefGoogle Scholar
  37. Dannenmann M, Gasche R, Papen H (2007a) Nitrogen turnover and N2O production in the forest floor of beech stands as influenced by forest management. J Plant Nutr Soil Sci 170:134–144CrossRefGoogle Scholar
  38. Dannenmann M, Gasche R, Ledebuhr A, Holst T, Mayer H, Papen H (2007b) The effect of forest management on trace gas exchange at the pedosphere-atmosphere interface in beech (Fagus sylvatica L.) forests stocking on calcareous soils. Eur J For Res 126:331–346CrossRefGoogle Scholar
  39. Dannenmann M, Butterbach-Bahl K, Gasche R, Willibald S, Papen H (2008) Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol Biochem 40:2317–2323CrossRefGoogle Scholar
  40. Dannenmann M, Simon J, Gasche R, Holst J, Pena R, Naumann PS, Kögel-Knabner I, Knicker H, Mayer H, Schloter M, Polle A, Rennenberg H, Papen H (2009) Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biol Biochem 41:1622–1631CrossRefGoogle Scholar
  41. Dannenmann M, Bimüller C, Gschwendtner S, Leberecht M, Tejedor J, Bilela S, Gasche R, Hanewinkel M, Baltensweiler A, Kögel-Knabner I, Polle A, Schloter M, Simon J, Rennenberg H (2016) Climate change impairs nitrogen cycling in European Beech forests. PLoS One 11(7):e0158823PubMedPubMedCentralCrossRefGoogle Scholar
  42. Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosyst 48:37–50CrossRefGoogle Scholar
  43. De Mazancourt C, Loreau M, Dieckmann U (2005) Understanding mutualism when there is adaptation to the partner. J Ecol 93:305–314CrossRefGoogle Scholar
  44. De Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5:392–402CrossRefGoogle Scholar
  45. Del Rio M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16:166–176PubMedCrossRefGoogle Scholar
  46. Diaconu D, Wassenberg M, Spiecker H (2016) Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect. For Ecosyst 3:6CrossRefGoogle Scholar
  47. Dong F, Simon J, Rienks M, Lindermayr C, Rennenberg H (2015) Effects of rhizospheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on CO2 concentration, soil N availability, and N source. Tree Physiol 35:910–920PubMedCrossRefGoogle Scholar
  48. Dong F, Simon J, Rienks M, Schäffer J, von Wilpert K, Rennenberg H (2016) Environmental effects on soil NO concentration and root N uptake in beech and spruce forests. J Plant Nutr Soil Sci 179:244–256CrossRefGoogle Scholar
  49. Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Environ 32:992–1003PubMedCrossRefGoogle Scholar
  50. Ellenberg H 1996 Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart, Germany, 5th editionGoogle Scholar
  51. Ellenberg H, Leuschner C (2014) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer Verlag, Stuttgart, p 1333Google Scholar
  52. Falk W, Hempelmann N 2013 Species favourability shift in Europe due to climate change: a case study for Fagus sylvatica L. and Picea abies (L.) Karst. Based on an ensamble of climate models. J Climatol vol. 2013, ID 787250Google Scholar
  53. Feldmann H, Schädler G, Panitz HJ, Kottmeier C (2013) Near future changes of mean and extreme precipitation derived from an ensemble of high-resolution RCM simulations. Int J Climatol 33:1964–1977CrossRefGoogle Scholar
  54. Felten J, Kohler A, Morin M, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fotelli M, Gessler A, Peuke AD, Rennenberg H (2001) Drought effects the competitive interaction between Fagus sylvatica seedlings and an early successional species (Rubus fruticosus): responses of growth, water status, and δ13C composition. New Phytol 151:427–436CrossRefGoogle Scholar
  56. Fotelli MN, Nahm M, Heidenfelder A, Papen H, Rennenberg H, Gessler A (2002a) Soluble nonprotein nitrogen compounds indicate changes in the nitrogen status of beech seedlings due to climate and thinning. New Phytol 154:85–97CrossRefGoogle Scholar
  57. Fotelli MN, Rennenberg H, Gessler A (2002b) Effects of drought on the competitive interference of an early successional species (Rubus fruticosus) on Fagus sylvatica L. seedlings: 15N uptake and partitioning, responses of amino acids and other N compounds. Plant Biol 4:311–320CrossRefGoogle Scholar
  58. Fotelli MN, Rennenberg H, Holst T, Mayer H, Gessler A (2003) Carbon isotope composition of various tissues of beech (Fagus sylvatica L.) regeneration is indicative of recent environmental conditions within the forest understorey. New Phytol 159:229–244CrossRefGoogle Scholar
  59. Fotelli MN, Rienks M, Rennenberg H, Gessler A (2004) Climate and forest management affect 15N-uptake, N balance and biomass of European beech seedlings. Trees 18:157–166CrossRefGoogle Scholar
  60. Fotelli MN, Rudolf P, Rennenberg H, Gessler A (2005) Irradiance and temperature affect the competitive interference of blackberry on the physiology of European beech seedlings. New Phytol 165:453–462PubMedCrossRefGoogle Scholar
  61. Frei C 2004 Klimazukunft der Schweiz – Eine probabilistische Projektion. Eidgenössische Technische Hochschule (Zürich), Institut für Atmosphäre und Klima. MeteoSchweiz, Zürich.Google Scholar
  62. Gärdenäs A, Agren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions – from molecular to global scale. Soil Biol Biochem 43:702–717CrossRefGoogle Scholar
  63. Gessler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams M (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.) New Phytol 150:653–664CrossRefGoogle Scholar
  64. Gessler A, Keitel C, Nahm M, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in central European beech forests. Plant Biol 6:289–298PubMedCrossRefGoogle Scholar
  65. Gessler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformation and inorganic N uptake capacity of micorrhizal roots. Eur J For Res 124:95–111CrossRefGoogle Scholar
  66. Gessler A, Schaub M, McDowell N (2016) Tansley insight: the role of nutrients in drought-induced tree mortality and recovery. New Phytol. doi: 10.1111/nph.14340
  67. Giuggiola A, Ogée J, Rigling A, Gessler A, Bugmann H, Treydte K (2015) Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach. New Phytol 210:108–121PubMedCrossRefGoogle Scholar
  68. Grayston SJ, Rennenberg H (2006) Assessing effects of forest management on microbial community structure in a European beech forest. Can J For Res 36:2595–2604CrossRefGoogle Scholar
  69. Gschwendtner S, Leberecht M, Engel M, Kublike S, Dannenmann M, Polle A, Schloter M (2015) Effects of elevated atmospheric CO2 on microbial community structure at the plant-soil interface of young beech trees (Fagus sylvatica L.) grown at two sites with contrasting climatic conditions. Microbial Ecol 69:867–878CrossRefGoogle Scholar
  70. Guo C, Simon J, Gasche R, Naumann PS, Bimüller C, Pena R, Polle A, Kögel-Knabner I, Zeller B, Rennenberg H, Dannenmann M (2013a) Minor contribution of leaf litter to N nutrition of beech (Fagus sylvatica) seedlings in a mountainous beech forest of southern Germany. Plant Soil 369:657–668CrossRefGoogle Scholar
  71. Guo C, Dannenmann M, Gasche R, Zeller B, Papen H, Polle A, Rennenberg H, Simon J (2013b) Preferential use of root litter compared to leaf litter by beech seedlings and soil microorganisms. Plant Soil 368:519–534CrossRefGoogle Scholar
  72. Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, Geppert U, Kerner R, Molinier V, Egli S, Schaub M, Liu J-F, Li M, Sever K, Weiler M, Siegwolf R, Gessler A, Arend M (2016) Recovery of trees from drought depends on belowground sink control. Nat Plants 2:16111PubMedCrossRefGoogle Scholar
  73. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207CrossRefGoogle Scholar
  74. Hasselquist NJ, Metcalfe DB, Inselsbacher E, Stangl S, Oren R, Näsholm T, Högberg P (2016) Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology. doi: 10.1890/15-1222
  75. Helmisaari H-S, Ostonen I, Lõhmus K, Derome J, Lindroos A-J, Merilä P, Nöjd P (2009) Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456PubMedCrossRefGoogle Scholar
  76. Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD (2016) Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. New Phytol 209:1693–1704PubMedCrossRefGoogle Scholar
  77. Hentschel R, Hommel R, Poschenrieder W, Grote R, Holst J, Biernath C, Gessler A, Priesack E (2016) Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech. Trees Struct Funct 30:153–174CrossRefGoogle Scholar
  78. Hodge A, Fitter AH (2013) Microbial mediation of plant competition and community structure. Funct Ecol 27:865–875CrossRefGoogle Scholar
  79. Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820CrossRefGoogle Scholar
  80. Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308PubMedCrossRefGoogle Scholar
  81. Högberg P (1989) Growth and nitrogen inflow rates in mycorrhizal and nonmycorrhizal seedlings of Pinus sylvestris. For Ecol Manag 28:7–17CrossRefGoogle Scholar
  82. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792PubMedCrossRefGoogle Scholar
  83. Holst T, Mayer H, Schindler D (2004) Microclimate within beech stands - part II: thermal conditions. Eur J For Res 123:13–28CrossRefGoogle Scholar
  84. Holst J, Grote R, Offermann C, Ferrio JP, Gessler A, Mayer H, Rennenberg H (2010) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23–36PubMedCrossRefGoogle Scholar
  85. Hommel R, Siegwolf R, Zavadlav S, Arend M, Schaub M, Galiano L, Haeni M, Kayler ZE, Gessler A (2016) Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol 18:785–796PubMedCrossRefGoogle Scholar
  86. Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Ann Rev Plant Physiol Plant Mol Biol 45:577–607CrossRefGoogle Scholar
  87. IPCC (2007) Climate change 2007 - the physical Science basis. In: Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Millar HL (eds) Contribution of Working Group I to the forth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  88. IPCC (2013) Climate change 2013 - the physical Science basis. In: Stocker D, Qin TF, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254Google Scholar
  89. Javelle A, Chalot M, Söderström B, Botton B (1999) Ammonium and methylamine transport by the ectomyccorhizal fungus Paxillus involutus and ectomycorrhizas. FEMS Microbiol Ecol 30:355–366PubMedCrossRefGoogle Scholar
  90. Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2009) Quantitative analysis of soluble exudates produced by ectomyccorhizal roots as a response to ambient and elevated CO2. Soil Biol Biochem 41:1111–1116CrossRefGoogle Scholar
  91. Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  92. Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109CrossRefGoogle Scholar
  93. Kaiser C, Kilburn MR, Claude PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551PubMedCrossRefGoogle Scholar
  94. Kaye JP, Hart SC (1997) Competition for nitrogen between plants and microorganisms. Trends Ecol Evol 12:139–143PubMedCrossRefGoogle Scholar
  95. Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-time measure for stomatal conductance of European beech (Fagus sylvatica). Plant Cell Environ 26:1157–1168CrossRefGoogle Scholar
  96. Kitzler B, Zechmeister-Boltenstern S, Holtermann C, Skiba U, Butterbach-Bahl K (2006) Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences 3:293–310CrossRefGoogle Scholar
  97. Kramer K, Degen B, Buschbom J, Hickler T, Thuller W, Sykes MT, de Winter T (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change – range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222CrossRefGoogle Scholar
  98. Kreutzer K, Butterbach-Bahl K, Rennenberg H, Papen H (2009) The complete nitrogen cycle in a N-saturated spruce forest ecosystem. Plant Biol 11:643–649PubMedCrossRefGoogle Scholar
  99. Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234PubMedCrossRefGoogle Scholar
  100. Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669PubMedCrossRefGoogle Scholar
  101. Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925CrossRefGoogle Scholar
  102. Lankau RA, Wheeler E, Bennett AE, Strauss SY (2011) Plant-soil feedbacks contribute to an intransitive competitive network that promotes both genetic and species diversity. J Ecol 99:176–185CrossRefGoogle Scholar
  103. Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, van der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard K, Prieme A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K (2011) Reduced N cycling in response to elevated CO2, warming and drought in a Danish heathland: synthesizing results of the CLIMATE project after two years of treatments. Glob Change Biol 17:1884–1899CrossRefGoogle Scholar
  104. Leberecht M, Dannenmann M, Gschwendtner S, Bilela S, Meier R, Simon J, Rennenberg H, Schloter M, Polle A (2015) Ectomycorrhizal communities on the roots of two beech (Fagus sylvatica) populations from contrasting climate differ in nitrogen acquisition in a common environment. Appl Environ Microbiol 81:5957–5967PubMedPubMedCentralCrossRefGoogle Scholar
  105. Leberecht M, Dannenmann M, Tejedor J, Simon J, Rennenberg H, Polle A (2016) Segragation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. Plant Cell Environ. doi: 10.1111/pce.12820
  106. Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. Trees in dry and wet years. For Ecol Manag 149:33–46CrossRefGoogle Scholar
  107. Levesque M, Walthert L, Weber P (2016) Soil nutrients influence growth response of temperate tree species to drought. J Ecol 104:377–387CrossRefGoogle Scholar
  108. Li X, Rennenberg H, Simon J (2015) Competition for nitrogen between Fagus sylvatica and Acer pseudoplatanus seedlings depends on soil nitrogen availability. Frontiers Plant Sci 6:302Google Scholar
  109. Li X, Rennenberg H, Simon J (2016a) Seasonal variation in N uptake strategies in the understory of a N-limited, beech dominated forest ecosystem depends on N source and species. Tree Physiol 36:589–600PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li R, Yang Q, Zhang W, Zheng W, Chi Y, Xu M, Fang Y, Gessler A, Li M-H, Wang S (2016b) Thinning effect on photosynthesis depends on needle ages in a Chinese fir (Cunninghamia lanceolata) plantation. Sci Total Environ. doi: 10.1016/j.scitotenv.2016.12.036
  111. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205CrossRefGoogle Scholar
  112. Markensteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environm 34:137–148CrossRefGoogle Scholar
  113. Marschner H 1995 Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889 Google Scholar
  114. McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266PubMedCrossRefGoogle Scholar
  115. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739PubMedCrossRefGoogle Scholar
  116. McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532PubMedCrossRefGoogle Scholar
  117. Medhurst JL, Beadle CL (2005) Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by high-intensity thinning. Tree Physiol 25:981–991PubMedCrossRefGoogle Scholar
  118. Mekonnen MM, Hoekstra AY (2014) Water footprint benchmarks for crop production: a first global assessment. Ecol Indic 45:214–223CrossRefGoogle Scholar
  119. Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095PubMedCrossRefGoogle Scholar
  120. Nahm M, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2006) Soluble N compound profiles and concentrations in European beech (Fagus sylvatica L.) are influenced by local climate and thinning. Eur J For Res 125:1–14CrossRefGoogle Scholar
  121. Nahm M, Matzarakis A, Rennenberg H, Geßler A (2007) Seasonal courses of key parameters of nitrogen, carbon and water balance of European beech (Fagus sylvatica L.) grown on four different study sites along a European north-south climate gradient during the 2003 drought. Trees 21:79–92CrossRefGoogle Scholar
  122. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48PubMedCrossRefGoogle Scholar
  123. Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221PubMedCrossRefGoogle Scholar
  124. Offermann C, Ferrio JP, Holst J, Grote R, Siegwolf R, Kayler Z, Gessler A (2011) The long way down--are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Tree Physiol 31:1088–1102PubMedCrossRefGoogle Scholar
  125. Palacio S, Hoch GU, Sala A, Korner C, Millard P (2014) Does carbon storage limit tree growth? New Phytol 201:1096–1100PubMedCrossRefGoogle Scholar
  126. Paul T 1998 Nutzungsgeschichte. In: Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen. Vorcharakterisierung der Untersuchungsflächen. Antrag auf Finanzierung eines Sonderforschungsbereichs, Universität Freiburg.Google Scholar
  127. Pena R (2016) Nitrogen acquisition in ectomycorrhizal symbiosis. In: Martin F (ed) Molecular mycorrhizal symbiosis. John Wiley & sons, New York, pp 179–196CrossRefGoogle Scholar
  128. Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J 8:321–330PubMedCrossRefGoogle Scholar
  129. Pena R, Offermann C, Simon J, Naumann PS, Gessler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl Environ Microbiol 76:1831–1841PubMedPubMedCentralCrossRefGoogle Scholar
  130. Pena R, Simon J, Rennenberg H, Polle A (2013a) Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought. Environ Exp Bot 87:207–217CrossRefGoogle Scholar
  131. Pena R, Tejedor J, Zeller B, Dannenmann M, Polle A (2013b) Interspecific temporal and spatial differences in the acquisition of litter-derived nitrogen by ectomycorrhizal fungal assemblages. New Phytol 199:520–528PubMedCrossRefGoogle Scholar
  132. Pfautsch S, Rennenberg H, Bell TL, Adams MA (2009) Nitrogen uptake by Eucalyptus regnans and Acacia spp. - preferences, resource overlap and energetic costs. Tree Physiol 29:389–399PubMedCrossRefGoogle Scholar
  133. Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle KH, Pritsch K, Kerner R, Munch JC (2014) Mixed Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica (L.)) stands under drought: from reaction pattern to mechanism. Trees Struct Funct 28:1305–1321CrossRefGoogle Scholar
  134. Rasztovits E, Berki I, Mátyás C, Czimber K, Pötzelsberger E, Móricz N (2014) The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Ann For Sci 71:201–210CrossRefGoogle Scholar
  135. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  136. Rennenberg H, Dannenmann M (2015) Nitrogen nutrition of trees and temperate forests – the significance of nitrogen availability in pedosphere and atmosphere. Forests 6:2820–2835CrossRefGoogle Scholar
  137. Rennenberg H, Seiler W, Matyssek R, Gessler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.) – ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allg. Forst Jagdzeit 175:210–224Google Scholar
  138. Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571PubMedCrossRefGoogle Scholar
  139. Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forests: nutritional limitation of plants under climate change stresses. Plant Biol 11(Suppl):4–23PubMedCrossRefGoogle Scholar
  140. Robertson GP, Groffman PM (2005) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 3rd edn. Academic Press, Oxford, pp 341–387Google Scholar
  141. Rosegrant MW, Ringler C, Zhu T (2009) Water for agriculture: maintaining food security under growing scarcity. Ann Rev Environ Res 34:205–222CrossRefGoogle Scholar
  142. Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009) Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184:950–961PubMedCrossRefGoogle Scholar
  143. Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739CrossRefGoogle Scholar
  144. Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants territorial? Adv Ecol Res 28:145–180CrossRefGoogle Scholar
  145. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602CrossRefGoogle Scholar
  146. Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: Mycorrhizal ecology. Springer, Heidelberg Berlin, pp 33–74CrossRefGoogle Scholar
  147. Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60CrossRefGoogle Scholar
  148. Simon S, Stoelken G, Rienks M, Rennenberg H (2009) Rhizospheric NO interacts with the acquisition of reduced nitrogen sources by the roots of European beech (Fagus sylvatica). FEBS Lett 583:2907–2910PubMedCrossRefGoogle Scholar
  149. Simon J, Waldhecker P, Brüggemann N, Rennenberg H (2010) Competition for nitrogen sources between European beech (Fagus sylvatica) and sycamore maple (Acer pseudoplatanus) seedlings. Plant Biol 12:453–458PubMedCrossRefGoogle Scholar
  150. Simon J, Dannenmann M, Gasche R, Holst J, Mayer H, Papen H, Rennenberg H (2011) Competition for nitrogen between adult European beech and its offspring is reduced by avoidance strategy. For Ecol Manag 262:105–114CrossRefGoogle Scholar
  151. Simon J, Dong F, Buegger F, Rennenberg H (2013) Rhizospheric NO affects N uptake and metabolism in Scots pine (Pinus sylvestris L.) seedlings depending on soil N availability and N sources. Plant Cell Environ 36:1019–1026PubMedCrossRefGoogle Scholar
  152. Simon J, Li X, Rennenberg H (2014) Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability. Tree Physiol 34:49–60PubMedCrossRefGoogle Scholar
  153. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San DiegoGoogle Scholar
  154. Stoelken G, Simon J, Ehlting B, Rennenberg H (2010) The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica L.) Tree Physiol 30:1118–1128PubMedCrossRefGoogle Scholar
  155. Strzepek K, Boehlert B (2010) Competition for water for the food system. Philos Trans R Soc B 365:2927–2940CrossRefGoogle Scholar
  156. Sun Z, Liu L, Peng S, Penuelas J, Zeng H, Piao S (2016) Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation. Ecosystems 19:698–709CrossRefGoogle Scholar
  157. Tarp P, Helles F, Holten-Andersen P, Larsen JB, Strange N (2000) Modelling near-natural silvicultural regimes of beech – an economic sensitivity analysis. For Ecol Manag 130:187–198CrossRefGoogle Scholar
  158. Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res 133:61–71CrossRefGoogle Scholar
  159. Tejedor J, Saiz G, Rennenberg H, Dannenmann M (2017) Thinning of beech forests stocking on shallow calcareous soil maintains soil C and N stocks in the long run. Forests 8(5)167. doi: 10.3390/f8050167
  160. Trinder CJ, Brooker RW, Robinson D (2013) Plant ecology’s guilty little secret: understanding the dynamics of plant competition. Funct Ecol 27:918–929CrossRefGoogle Scholar
  161. Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A (2014) Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24:645–650PubMedCrossRefGoogle Scholar
  162. van Bel A (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149CrossRefGoogle Scholar
  163. van der Heijden EW, Kuyper TW (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680CrossRefGoogle Scholar
  164. van Groeningen JW, Huygens D, Boeckx P, Kuyper TW, Lubbers IM, Rütting T, Groffman PM (2015) The soil N cycle: new insights and key challenges. Soil 1:235–256CrossRefGoogle Scholar
  165. von Felten S, Niklaus PA, Scherer-Lorenzen M, Hector A, Buchmann N (2012) Do grassland plant communities profit from N partitioning by soil depth? Ecology 93:2386–2396CrossRefGoogle Scholar
  166. von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler ZE (2016) Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Glob Chang Biol 22:2861–2874CrossRefGoogle Scholar
  167. Wagner S, Berg P, Schädler G, Kunstmann H (2013) High resolution regional climate model simulations for Germany: part II – projected climate changes. Clim Dyn 40:415–427CrossRefGoogle Scholar
  168. Wang YP, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. doi: 10.1029/2009gl041009 CrossRefGoogle Scholar
  169. Weemstra M, Eilmann B, Sass-Klaassen UGW, Sterck FJ (2013) Summer droughts limit tree growth across 10 temperate species on a productive forest site. For Ecol Manag 306:142–149CrossRefGoogle Scholar
  170. Deutscher Wetterdienst 2015 Witterungsreport Deutschland: Sommer 2015, (accessed: 22/07/2016)
  171. Winkler JB, Dannenmann M, Simon J, Pena R, Offermann C, Sternad W, Clemenz C, Naumann PS, Gasche R, Kögel-Knabner I, Gessler A, Rennenberg H, Polle A (2010) Carbon and nitrogen balance in beech roots under competitive pressure of soil-borne microorganisms induced by girdling, drought and glucose application. Funct Plant Biol 37:879–889CrossRefGoogle Scholar
  172. WRB 2007 World reference base for soil resources 2006, first update 2007. International Union of Soil Sciences Working Group WRB.Google Scholar
  173. Zaehle S (2013) Terrestrial nitrogen-carbon cycle interactions at the global scale. Philos Trans R Soc B:368–20130125Google Scholar
  174. Zimmermann J, Hauck M, Dulamsuren C, Leuschner C (2015) Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central European mixed forests. Ecosystems 18:560–672CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Judy Simon
    • 1
    Email author
  • Michael Dannenmann
    • 2
  • Rodica Pena
    • 3
  • Arthur Gessler
    • 4
  • Heinz Rennenberg
    • 5
  1. 1.Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  3. 3.Forest Botany and Tree PhysiologyGeorg-August Universität GöttingenGöttingenGermany
  4. 4.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  5. 5.Chair of Tree Physiology, Institute of Forest SciencesAlbert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations