Skip to main content

Advertisement

Log in

Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Precipitation and nitrogen (N) deposition are predicted to increase in northern China. The present paper aimed to better understand how different dominant species in semi-arid grasslands in this region vary in their litter decomposition and nutrient release responses to increases in precipitation and N deposition.

Methods

Above-ground litter of three dominant species (two grasses, Agropyron cristatum and Stipa krylovii, and one forb, Artemisia frigida) was collected from areas without experimental treatments in a semi-arid grassland in Inner Mongolia. Litter decomposition was studied over three years to determine the effects of water and N addition on litter decomposition rate and nutrient dynamics.

Results

Litter mass loss and nutrient release were faster for the forb species than for the two grasses during decomposition. Both water and N addition increased litter mass loss of the grass A. cristatum, while the treatments showed no impacts on that of the forb A. frigida. Supplemental N had time-dependent, positive effects on litter mass loss of the grass S. krylovii. During the three-year decomposition study, the release of N from litter was inhibited by N addition for the three species, and it was promoted by water addition for the two grasses. Across all treatments, N and potassium (K) were released from the litter of all three species, whereas calcium (Ca) was accumulated. Phosphorus (P) and magnesium (Mg) were released from the forb litter but accumulated in the grass litter after three years of decomposition.

Conclusions

Our findings revealed that the litter decomposition response to water and N supplementation differed among dominant plant species in a semi-arid grassland, indicating that changes in dominant plant species induced by projected increases in precipitation and N deposition are likely to affect litter decomposition, nutrient cycling, and further biogeochemical cycles in this grassland. The asynchronous nutrient release of different species’ litter found in the present study highlights the complexity of nutrient replenishment from litter decomposition in the temperate steppe under scenarios of enhancing precipitation and N deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia grasslands. Glob Change Biol 16:358–372

    Article  Google Scholar 

  • Baker TT, Lockaby BG, Conner WH, Meier CE, Stanturf JA, Burke MK (2001) Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci Soc Am J 65:1334–1347

    Article  CAS  Google Scholar 

  • Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Academic Press, Amsterdam

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Bloor JMG, Bardgett RD (2012) Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol 14:193–204

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  PubMed  Google Scholar 

  • Burke IC, Lauenroth WK, Parton WJ (1997) Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology 78:1330–1340

    Article  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  PubMed  Google Scholar 

  • Carreiro M, Sinsabaugh R, Repert D, Parkhurst D (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Chapin FS, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley Y, Chu C, Cleland EE, Collins SL, Davies KF, Du G, Feng X, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schuetz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nat Plants 1:15080

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Zhou TJ, Wu B, Li T, Luo JJ (2011) Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv Atmos Sci 28:464–476

    Article  Google Scholar 

  • Fornara DA, Banin L, Crawley MJ (2013) Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Glob Change Biol 19:3848–3857

    Article  Google Scholar 

  • Gao X, Shi Y, Song R, Giorgi F, Wang Y, Zhang D (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorog Atmos Phys 100:73–86

    Article  Google Scholar 

  • García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S, Jones H (2016) The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct Ecol 30:819–829

    Article  Google Scholar 

  • Henry HAL, Moise ERD (2014) Grass litter responses to warming and N addition: temporal variation in the contributions of litter quality and environmental effects to decomposition. Plant Soil 389:35–43

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of decomposition. Ecosystems 8:644–656

    Article  CAS  Google Scholar 

  • Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89:2633–2644

    Article  PubMed  Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82:389–405

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Koukoura Z, Mamolos AP, Kalburtji KL (2003) Decomposition of dominant plant species litter in a semi-arid grassland. Appl Soil Ecol 23:13–23

    Article  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Loeppert PA, Soltanpour PN, Tabatabai MA, Johnston CT et al (eds) Methods of soil analysis Part 3: chemical methods. Soil Science Society of America and American Society of Agronomy, Madison

  • Li MH, Hoch G, Korner C (2002) Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees-Struct Funct 16:331–337

    Article  CAS  Google Scholar 

  • Li LJ, Zeng DH, Yu ZY, Fan ZP, Yang D, Liu YX (2011) Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. J Arid Environ 75:787–792

    Article  Google Scholar 

  • Li MH, Cherubini P, Dobbertin M, Arend M, Xiao WF, Rigling A (2013) Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biol 15:177–184

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Huang J, Han X, Sun OJ, Zhou Z (2006) Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Appl Soil Ecol 34:266–275

    Article  Google Scholar 

  • Liu P, Huang J, Sun OJ, Han X (2010) Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162:771–780

    Article  PubMed  Google Scholar 

  • Liu X, Duan L, Mo J, Du E, Shen J, Lu X, Zhang Y, Zhou X, He C, Zhang F (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Bai G, Sun Y, Kostenko O, Zhu X, Lin S, Ruan W, Zhao N, Bezemer TM (2016) Opposing effects of nitrogen and water addition on soil bacterial and fungal communities in the Inner Mongolia steppe: a field experiment. Appl Soil Ecol 108:128–135

    Article  Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Hattenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • Manning P, Saunders M, Bardgett RD, Bonkowski M, Bradford MA, Ellis RJ, Kandeler E, Marhan S, Tscherko D (2008) Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biol Biochem 40:688–698

    Article  CAS  Google Scholar 

  • Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–219

    CAS  PubMed  Google Scholar 

  • Portillo-Estrada M, Pihlatie M, Korhonen JFJ, Levula J, Frumau AKF, Ibrom A, Lembrechts JJ, Morillas L, Horvath L, Jones SK, Niinemets U (2016) Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13:1621–1633

    Article  Google Scholar 

  • Prescott CE (1995) Does nitrogen availability control rates of litter decomposition in forests. Plant Soil 168:83–88

    Article  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Schuster MJ (2016) Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie. Oecologia 180:645–655

    Article  PubMed  Google Scholar 

  • Seastedt T (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Article  Google Scholar 

  • Smith VC, Bradford MA (2003) Litter quality impacts on grassland litter decomposition are differently dependent on soil Fauna across time. Appl Soil Ecol 24:197–203

    Article  Google Scholar 

  • Stump LM, Binkley D (1993) Relationships between litter quality and nitrogen availability in rocky-moutain forests. Can J For Res 23:492–502

    Article  CAS  Google Scholar 

  • Walter J, Hein R, Beierkuhnlein C, Hammerl V, Jentsch A, Schaedler M, Schuerings J, Kreyling J (2013) Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18

    Article  CAS  Google Scholar 

  • Wang R, Filley TR, Xu Z, Wang X, Li M-H, Zhang Y, Luo W, Jiang Y (2014) Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia. Plant Soil 381:323–336

    Article  CAS  Google Scholar 

  • Wang X, Xu Z, Yan C, Luo W, Wang R, Han X, Jiang Y, Li M-H (2017) Responses and sensitivity of N, P and mobile carbohydrates of dominant species to increased water, N and P availability in semiarid grasslands in northern China. J Plant Ecol. doi:10.1093/jpe/rtw053

  • Xiao W, Ge X, Zeng L, Huang Z, Lei J, Zhou B, Li M (2014) Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three gorges reservoir area, China. PLoS One 9:e101890

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu GL, Schleppi P, Li M-H, Fu SL (2009) Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environ Pollut 157:2030–2036

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wan S, Zhu G, Ren H, Han X (2010) The influence of historical land use and water availability on grassland restoration. Restor Ecol 18:217–225

    Article  CAS  Google Scholar 

  • Xu GL, Kuster TM, Guenthardt-Goerg MS, Dobbertin M, Li M-H (2012a) Seasonal exposure to drought and air warming affects soil Collembola and mites. PLoS One 7:e43102

  • Xu ZW, Wan SQ, Ren HY, Han XG, Li MH, Cheng WX, Jiang Y (2012b) Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One 7:e39762

  • Xu ZW, Wan SQ, Ren HY, Han XG, Jiang Y (2012c) Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands. J Arid Environ 87:103–109

  • Yue K, Yang W, Peng C, Peng Y, Zhang C, Huang C, Tan Y, Wu F (2016) Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan plateau. Sci Total Environ 566-567:279–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhu W, Wang J, Zhang Z, Ren F, Chen L, He JS (2016) Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet plateau. Sci Rep-UK 6:34290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Duolun Restoration Ecological Research Station for facilitating this study, and Melissa Dawes for the language correction. This work was supported by the National Key Research and Development Program of China (2016YFC0500707), the National Natural Science Foundation of China (41371251, 31370009, 41371076), the Youth Innovation Promotion Association CAS (2014174), and the Sino-Swiss Science and Technology Cooperation (SSSTC) program (Project No. EG 06-032015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mai-He Li or Yong Jiang.

Additional information

Responsible Editor: Alfonso Escudero.

Electronic supplementary material

Table S1

(DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, Z., Lü, X. et al. Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant Soil 418, 241–253 (2017). https://doi.org/10.1007/s11104-017-3288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3288-8

Keywords

Navigation