Plant and Soil

, Volume 418, Issue 1–2, pp 205–218 | Cite as

Is annual or perennial harvesting more efficient in Ni phytoextraction?

  • George C. Adamidis
  • Maria Aloupi
  • Petros Mastoras
  • Maria-Ioanna Papadaki
  • Panayiotis G. Dimitrakopoulos
Regular Article



The use of perennial metal hyperaccumulators in phytoextraction provides an excellent gateway toward the removal of heavy metals from polluted sites, and the opportunity for the phytomining of valuable metals. In order to further advance our understanding of the effect of cropping systems on metal phytoextraction, it is important to investigate the effect of harvesting time. This study focuses on the variation in biomass production, Ni concentration and Ni mass across the different phenological stages, populations and organs of Alyssum lesbiacum, in order to evaluate when Ni phytoextraction is at a maximum.


We sampled 60 single-phenological stage plots in three A. lesbiacum populations and we determined biomass production and Ni concentration at the plant organ level.


Based on spontaneous A. lesbiacum vegetation, we were able to record remarkably high values of Ni phytoextraction. Biomass production and Ni concentration were found to be maximal on the third and fourth year of the A. lesbiacum life cycle respectively, while maximum phytoextraction capacity was reached in the third year.


Our results: (1) demonstrate the significant variation in Ni phytoextraction across different phenological stages, populations and organs of A. lesbiacum, (2) imply that its phytoextraction potential is mostly influenced by biomass production and (3) suggest that perennial harvests could be an interesting alternative to consider in the future.


Alyssum lesbiacum Intra-specific variation Nickel hyperaccumulation Phenology Phytomining Phytoremediation 



We would like to thank Professor Triantaphyllos Akriotis for editorial assistance, and the Editor van der Ent and three anonymous reviewers for their constructive comments on an earlier version of the manuscript.


  1. Adamidis GC, Aloupi M, Kazakou E, Dimitrakopulos PG (2014a) Intra-specific variation in Ni tolerance, accumulation and translocation patterns in the Ni-hyperaccumulator Alyssum lesbiacum. Chemosphere 95:496–502CrossRefPubMedGoogle Scholar
  2. Adamidis GC, Dimitrakopoulos PG, Manolis A, Papageorgiou AC (2014b) Genetic diversity and population structure of the serpentine endemic Ni hyperaccumulator Alyssum lesbiacum. Plant Syst Evol 300:2051–2060CrossRefGoogle Scholar
  3. Adamidis GC, Kazakou E, Baker AJM, Reeves RD, Dimitrakopoulos PG (2014c) The effect of harsh abiotic conditions on the diversity of serpentine plant communities on lesbos, an eastern Mediterranean island. Plant Ecol Divers 7:433–444CrossRefGoogle Scholar
  4. Adamidis GC, Kazakou E, Fyllas NM, Dimitrakopoulos PG (2014d) Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on lesbos, eastern Mediterranean. PLoS One 9:e96034. doi: 10.1371/journal.pone.0096034 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Adamidis GC, Kazakou E, Aloupi M, Dimitrakopoulos PG (2016) Is it worth hyperaccumulating Ni on non-serpentine soils? Decomposition dynamics of mixed-species litters containing hyperaccumulated Ni across serpentine and non-serpentine environments. Ann Bot 117(7):1241–1248CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608CrossRefGoogle Scholar
  7. Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90CrossRefGoogle Scholar
  8. Bani A, Echevarria G, Sulçe S, Morel J, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89CrossRefGoogle Scholar
  9. Bani A, Echevarria G, Sulçe S, Morel JL (2015a) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat 17:117–127CrossRefGoogle Scholar
  10. Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL et al (2015b) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77. doi: 10.1071/bt14285 Google Scholar
  11. Bednářová Z, Kalina J, Hájek O, Sáňka M, Komprdová K (2016) Spatial distribution and risk assessment of metals in agricultural soils. Geoderma 284:113–121CrossRefGoogle Scholar
  12. Belouchrani AS, Mameri N, Abdi N, Grib H, Lounici H, Drouiche N (2016) Phytoremediation of soil contaminated with Zn using canola(Brassica napus L). Ecol Eng 95:43–49CrossRefGoogle Scholar
  13. Berti WWR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals – using plants to clean up the environment. John Wiley & Sons, Inc, New York, pp 71–88Google Scholar
  14. Bian Z, Miao X, Lei S, Chen S-E, Wang W, Struthers S (2012) The challenges of reusing mining and mineral-processing wastes. Science 337(6095):702–703CrossRefPubMedGoogle Scholar
  15. Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242CrossRefGoogle Scholar
  16. Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akmans Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). P Roy Soc Lond B 203:387–403CrossRefGoogle Scholar
  17. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining Trends Plant Sci 1: 359–362Google Scholar
  18. Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JFEA (ed) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, pp 50–76Google Scholar
  19. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284CrossRefPubMedGoogle Scholar
  20. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433CrossRefPubMedGoogle Scholar
  21. Chardot V, Massoura ST, Echevarria G, Reeves RD, Morel JL (2005) Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytoremediat 7:323–335CrossRefGoogle Scholar
  22. Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390CrossRefPubMedGoogle Scholar
  23. Cluis C (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. Bio Teach J 2:61–67Google Scholar
  24. Coinchelin D, Bartoli F, Robin C, Echevarria G (2012) Ecophysiology of nickel phytoaccumulation: a simplified biophysical approach. J Exp Bot 63:5815–5827CrossRefPubMedGoogle Scholar
  25. Deng T, Tang Y, van der Ent A, Sterckeman T, Echevarria G, Morel JL, Qiu RL (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45CrossRefGoogle Scholar
  26. Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E (2016) Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399(1–2):179–192CrossRefGoogle Scholar
  27. van der Ent A, Baker AJM, Reeves RD, Chaney RL (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780CrossRefPubMedGoogle Scholar
  28. Greipsson S (2011) Phytoremediation Nat Educ Knowl 3(10), 7Google Scholar
  29. Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169(3):101–123CrossRefGoogle Scholar
  30. Kazakou E, Adamidis GC, Baker AJM, Reeves RD, Godino M, Dimitrakopoulos PG (2010) Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil 332:369–385CrossRefGoogle Scholar
  31. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefPubMedGoogle Scholar
  32. Li YM, Chaney RL, Brewer E, Roseberg RJ, Angle JS, Baker AJM, Reeves RD, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115CrossRefGoogle Scholar
  33. Li JT, Liao B, Lan CY, Ye ZH, Baker AJM, Shu WS (2010) Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J Environ Qual 39:1262–1268CrossRefPubMedGoogle Scholar
  34. Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152CrossRefPubMedGoogle Scholar
  35. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121CrossRefPubMedGoogle Scholar
  36. Milic D, Lukovic J, Ninkov J, Zeremski-Skoric T, Zoric L, Vasin J, Milic S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317Google Scholar
  37. Moon JW, Moon HS, Woon NC, Hahn JS, Won JS (2000) Evaluation of heavy metal contamination and implication of multiple sources from Hunchun basin, northeastern China. Environ Geol 39(9):1039–1052CrossRefGoogle Scholar
  38. Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406(1–2):55–69CrossRefGoogle Scholar
  39. R Core Team (2016) R: a language and environment for statistical computing. Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5:961–970Google Scholar
  41. Reeves RD, Baker AJM, Kelepertsis A (1997) The distribution and biogeochemistry of some serpentine plants of Greece. In: Jaffre T, Reeves RD, Becquer T (eds) Ecologie des milieux sur roches ultramafiques et sur sols metalliferes. ORSTOM, Noumea, pp 205–207Google Scholar
  42. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxicmetals. Wiley, New York, pp 193–229Google Scholar
  43. Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126CrossRefGoogle Scholar
  44. Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997b) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86CrossRefGoogle Scholar
  45. Robinson BH, Brooks RR, Clothier BE (1999) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot-London 84:689–694CrossRefGoogle Scholar
  46. Robinson BH, Anderson CWN, Dickinson NM (2015) Phytoextraction: where’s the action? J Geochem Explor 151:34–40CrossRefGoogle Scholar
  47. Singer AC, Bell T, Heywood CA, Smith JAC, Thompson IP (2007) Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environ Pollut 147:74–82CrossRefPubMedGoogle Scholar
  48. Strid A, Tan K (2002) Flora Hellenica, vol 2. A.R.G. Gantner Verlag KG, RuggellGoogle Scholar
  49. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1964-1980) Flora Europaea. Cambridge University Press, CambridgeGoogle Scholar
  50. US Environmental Protection Agency (2007) Method 3051A, microwave assisted acid digestion of sediments, Sludges, soils, and oils, revision 1. Test Methods for Evaluating Solid Waste, USEPA Washington DCGoogle Scholar
  51. Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot M-O (2014) Selection and combustion of nickel-hyperaccumulators for the phytomining process. Int J Phytoremed 16:1058–1072CrossRefGoogle Scholar
  52. Zhang X, Zhong T, Liu L, Ouyang X (2015) Impact of soil heavy metal pollution on food safety in China. PLoS One 10(8):e0135182CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • George C. Adamidis
    • 1
  • Maria Aloupi
    • 2
  • Petros Mastoras
    • 1
  • Maria-Ioanna Papadaki
    • 1
  • Panayiotis G. Dimitrakopoulos
    • 1
  1. 1.Biodiversity Conservation Laboratory, Department of EnvironmentUniversity of the AegeanMytileneGreece
  2. 2.Water and Air Quality Laboratory, Department of EnvironmentUniversity of the AegeanMytileneGreece

Personalised recommendations