Skip to main content
Log in

Higher accumulation capacity of cadmium than zinc by Arabidopsis halleri ssp. germmifera in the field using different sowing strategies

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

A-nine month of field trail was conducted to investigate the accumulation capacity of cadmium and zinc by Arabidopsis halleri spp. germmifera.

Methods

An experimental site moderately contaminated with Zn and Cd was chosen to evaluate the field traits of seed sowing and seedling transplantation. The exchangeable fraction and total Cd and Zn in the soil and the concentration in harvested plants were determined by inductively coupled plasma mass spectrometer.

Results

The shoot biomass of A. halleri ssp. germmifera increased after more than 8 months of cultivation, and it was approximately 2.13 t ha−1 in the seedling transplantation group, which was more than three times higher than in the seed sowing group. The lower ratio of Zn/Cd concentration in plants than in the soil and the higher bioaccumulation factor indicated that A. halleri ssp. germmifera has a higher uptake efficiency for Cd than for Zn. In total, A. halleri ssp. germmifera removed 18.20 kg Cd ha−1 and 27.38 kg Zn ha−1 from the soil. After nine months of growth, A. halleri ssp. germmifera extracted (22.87 ± 9.21) % of total Cd concentration and (2.99 ± 0.94) % of total Zn concentration from the soil. However, no significant decrease of exchangeable concentration was shown in soil Cd and Zn, which revealed that the uptake of Cd and Zn by A. halleri ssp. germmifera not only came from exchangeable forms but also from non-exchangeable fractions.

Conclusions

The results of present study indicated that A. halleri ssp. germmifera can be used to efficiently remove different forms of Cd from contaminated land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  Google Scholar 

  • Assunção AGL, Bleeker P, ten Bookum WM, Vooijs R, Schat H (2008) Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303:289–299

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bert V, MacNair MR, DeLaguerie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and non-metallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    Article  CAS  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of cd tolerance and hyperaccumulation in Arabidopsis Halleri. Plant Soil 249:9–18

    Article  CAS  Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1987) Methods for chemical analysis of soils. New Zealand Soil Bureau Sci Rep 80:103

    Google Scholar 

  • Bochicchio R, Sofo A, Terzano R, Gattullo CE, Amato M, Scopa A (2015) Root architecture and morphometric analysis of Arabidopsis thaliana grown in cd/cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiol Biochem 91:20–27

    Article  CAS  PubMed  Google Scholar 

  • Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc hyperacumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 9:761–771

    Article  Google Scholar 

  • Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Liu Y, Cao S (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claire-Lise M, Nathalie V (2012) The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnol 30:9–14

    Article  CAS  Google Scholar 

  • Fedotov PS, Kördel W, Miró M, Peijnenburg W, Wennrich R, Huang P (2012) Extraction and fractionation methods for exposure assessment of trace metals, metalloids, and hazardous organic compounds in terrestrial environments. Crit Rev Environ Sci Technol 42:1117–1171

    Article  CAS  Google Scholar 

  • Fischerova Z, Tlustos P, Szakova J, Sichorova K (2005) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    Article  Google Scholar 

  • Fonseca EM, Baptista Neto JA, Fernandez MA, Mcalister J, Smith B (2011) Geochemical behavior of heavy metals in different environments in Rodrigo de Freitas lagoon – RJ/Brazil. An Acad Bras Cienc 83:457–469

    Article  CAS  PubMed  Google Scholar 

  • Gryschko R, Kuhnle R, Terytze K, Breuer J, Stahr K (2005) Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-solution-evaluation of DIN 19730. J Soils Sediments 5:101–106

    Article  CAS  Google Scholar 

  • Hammer D, Keller C (2003) Phytoextraction of cd and Zn with Thlaspi caerulescens in field traits. Soil Use Manag 19:144–149

    Article  Google Scholar 

  • Hammer D, Kayser A, Keller C (2003) Phytoextraction of cd and Zn with Salix viminalis in field trials. Soil Use Manag 19:187–192

    Article  Google Scholar 

  • Hatayama M, Sato T, Shinoda K, Inoue C (2011) Effects of cultivation conditions on the uptake of arsenit and arsenic chemical species accumulated by Pteris vittata in hydroponics. J Biosci Bioeng 111:326–332

    Article  CAS  PubMed  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthes V, Isaure MP, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. J Environ Exp Bot 82:54–65

    Article  CAS  Google Scholar 

  • Iqbal M, Ahmad A, Ansari MKA, Qureshi MI, Aref IM, Khan PR, Hegazy SS, El-Atta H, Husen A, Hakeem K (2015) Improving the phytoextraction capacity of plants to scavenge metal(loid)-contaminated sites. Environ Rev 23:44–65

    Article  CAS  Google Scholar 

  • Isaure M, Huguet S, Meyer C, Castillo-Michel H, Testemale D, Vantelon D, Saumitou-Laprade P, Verbruggen N, Sarret G (2015) Evidence of various mechanisms of cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. J Exp Bot 66:3201–3214

    Article  CAS  PubMed  Google Scholar 

  • Japan Meteorological Agency (2012-2013). http://www.jma.go.jp/jma/index.html

  • Kashem MA, Singh BR, Kondo T, Imamul Huq SM, Kawai S (2007) Comparison of extractability of cd, cu, Pb and Zn with sequential extraction in contaminated and non-contaminated soils. Int J Environ Sci Technol 4:169–176

    Article  CAS  Google Scholar 

  • Knight B, Zhao F, McGrath SP, Shen Z (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78

    Article  CAS  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  PubMed  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of cd and Zn. Int J Phytorem 5:197–201

    Article  CAS  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liao B, Dai Z, Zhu R, Shu W (2009) Phytoextraction of cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 76:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Shen Z, Zhao F (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159

    Article  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao F (2006) Field evaluation of cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  PubMed  Google Scholar 

  • Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair KPP (1996) The buffering power of plant nutrients and effects on availability. Adv Agron 57:237–287

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–17

    Article  PubMed  Google Scholar 

  • Richau K, Schat H (2009) Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens. Plant Soil 314:253–262

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • Vázquez S, Moreno E, Carpena RO (2008) Bioavailability of metals and as from acidified multicontaminated soils: use of white lupin to validate several extraction methods. Environ Geochem Health 32:193–198

    Article  Google Scholar 

  • Veseý T, Tlustos P, Száková J (2012) Organic acid enhanced soil risk element (cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Int J Phytorem 14:335–349

    Article  Google Scholar 

  • Waterlot C, Pruvot C, Bidar G, Fritsch C, De Vaufleury A, Scheifler R, Douay F (2016) Prediction of extractable cd, Pb and Zn in contaminated woody habitat soils using a change point detection method. Pedosphere 26:282–298

    Article  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombic G, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

    Article  CAS  Google Scholar 

  • Wieshammer G, Unterbrunner R, Gatcia TB, Zivkovic MF, Puschenreiter M, Wenzel WW (2007) Phytoextraction of cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil 298:255–264

    Article  CAS  Google Scholar 

  • Xian X, Shokohifard GI (1989) Effect of pH on chemical form and plant availability of cadmium, zinc, and lead in polluted soil. Water Air Soil Pollut 45:265–273

    Article  CAS  Google Scholar 

  • Zhao F, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

  • Zhao F, Jiang R, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB15010100), National Natural Scientific Foundation of China (No. 41622104, 21501107, 41430856), Mitsui & Co., Ltd., Environment Fund (Grant No. R11-F1-011), Key Laboratory for Solid Waste Management and Environment Safety (SWMES 2013-03), Distinguished Young Scholar Program of the Jiangsu Province (BK20160050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chihiro Inoue or Yuting Liang.

Additional information

Responsible Editor: Juan Barcelo.

Electronic supplementary material

ESM 1

Figure S1 (DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wen, X., Huang, Y. et al. Higher accumulation capacity of cadmium than zinc by Arabidopsis halleri ssp. germmifera in the field using different sowing strategies. Plant Soil 418, 165–176 (2017). https://doi.org/10.1007/s11104-017-3285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3285-y

Keywords

Navigation