Plant and Soil

, Volume 417, Issue 1–2, pp 261–274 | Cite as

Increasing acidity of rain in subtropical tea plantation alters aluminum and nutrient distributions at the root-soil interface and in plant tissues

  • Xiao-Fei Hu
  • Fu-Sheng Chen
  • Michael L. Wine
  • Xiang-Min Fang
Regular Article

Abstract

Background and aims

Acid rain alters aluminum (Al) and nutrient cycling in tea (Camellia sinensis) plantations. However, the underlying mechanisms of the interaction among Al, nitrogen (N) and phosphorus (P) dynamics in response to increasing acidity of rain remain unclear.

Methods

A typical tea plantation was selected for an experimental treatment by pH 4.5, 3.5, and 2.5 acid rains and control in southern China. After 3 years, rhizosphere and bulk soils were collected to analyze extractable Al fractions and available nutrients. Roots, stems, young and old twigs, tea and mature leaves were sampled to measure total Al, total N and P concentrations.

Results

Extractable Al fractions in rhizosphere soils generally increased with increasing rain acidity until pH 3.5 and dropped treated by pH 2.5 acid rain. In contrast, NO3 -N, mineral N and available P in rhizosphere soils monotonically decreased with increasing acidity. Average total Al and total P in plant tissues, respectively increased and decreased with increasing acidity. Soluble sugar in tea leaves was directly and inversely related to Al/N and N/P, respectively. Free amino acids were inversely related to Al/P.

Conclusion

Prolonged elevation of rain acidity altered Al and nutrient stoichiometry in rhizosphere soils and plant tissues, and severe acid rain decreased tea quality.

Keywords

Aboveground-belowground linkage Aluminum Camellia sinensis Rhizosphere Simulated acid rain Stoichiometry 

Notes

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Nos. 31560152, 31260199 and 31060081). We greatly appreciate Jing Li and Xi Chen for their help in field sampling and sample analysis.

Supplementary material

11104_2017_3256_MOESM1_ESM.docx (387 kb)
Figure S1 (DOCX 387 kb)
11104_2017_3256_MOESM2_ESM.docx (390 kb)
Table S1 (DOCX 389 kb)
11104_2017_3256_MOESM3_ESM.docx (389 kb)
Table S2 (DOCX 388 kb)
11104_2017_3256_MOESM4_ESM.docx (390 kb)
Table S3 (DOCX 390 kb)
11104_2017_3256_MOESM5_ESM.docx (382 kb)
Table S4 (DOCX 381 kb)
11104_2017_3256_MOESM6_ESM.docx (387 kb)
Table S5 (DOCX 386 kb)

References

  1. Allen SE (1989) Chemical Analysis of Ecological Materials, 2nd. Blackwell Scientific Publications, OxfordGoogle Scholar
  2. Alvarez E, Fernandez-Sanjurjo MJ, Nunez A, Seco N, Corti G (2012) Aluminium fractionation and speciation in bulk and rhizosphere of a grass soil amended with mussel shells or lime. Geoderma 173:322–329. doi: 10.1016/j.geoderma.2011.12.015 CrossRefGoogle Scholar
  3. Chen F-S, Fahey TJ, Yu M-Y, Gan L (2010) Key nitrogen cycling processes in pine plantations along a short urban–rural gradient in Nanchang, China. For Ecol Manag 259:477–486. doi: 10.1016/j.foreco.2009.11.003 CrossRefGoogle Scholar
  4. Chen F-S, Niklas KJ, Chen G-S, Guo D (2012) Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape. Plant Ecol 213:1489–1502. doi: 10.1007/s11258-012-0106-5 CrossRefGoogle Scholar
  5. Chen F-S, Niklas KJ, Liu Y, Fang X-M, Wan S-Z, Wang H (2015a) Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiol 35:1106–1117. doi: 10.1093/treephys/tpv076 CrossRefPubMedGoogle Scholar
  6. Chen X, Chen F-S, Ye S-Q, Yu S-Q, Fang X-M, Hu X-F (2015b) Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation. Chin J Appl Ecol 26:1–8Google Scholar
  7. Dang MV (2005) Soil-plant nutrient balance of tea crops in the northern mountainous region, Vietnam. Agric Ecosyst Environ 105:413–418. doi: 10.1016/j.agee.2004.05.004 CrossRefGoogle Scholar
  8. Debnath A, Barrow NJ, Ghosh D, Malakar H (2011) Diagnosing P status and P requirement of tea (Camellia sinensis L.) by leaf and soil analysis. Plant Soil 341:309–319. doi: 10.1007/s11104-010-0645-2 CrossRefGoogle Scholar
  9. Dong DM, Xie ZL, Du YG, Lin CM, Wang ST (1999) Influence of soil pH on aluminum availability in the soil and aluminum in tea leaves. Commun Soil Sci Plant Anal 30:873–883. doi: 10.1080/00103629909370252 CrossRefGoogle Scholar
  10. Dong DM, Xie ZL, Du YG (2001) The bioavailability of Al in soils to tea plants. Appl Geochem 16:1413–1418. doi: 10.1016/s0883-2927(01)00052-x CrossRefGoogle Scholar
  11. Duan X, Hu X, Chen F, Deng Z (2012) Bioactive ingredient levels of tea leaves are associated with leaf Al level interactively influenced by acid rain intensity and soil Al supply. J Food Agric Environ 10:1197–1204Google Scholar
  12. Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550. doi: 10.1046/j.1461-0248.2000.00185.x CrossRefGoogle Scholar
  13. Fang Y, Gundersen P, Vogt RD, Koba K, Chen F, Chen XY, Yoh M (2011) Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. J For Res 16:341–350. doi: 10.1007/s10310-011-0267-4 CrossRefGoogle Scholar
  14. Fang X-M, Chen F-S, Hu X-F, Yuan P-C, Li J, Chen X (2014) Aluminum and nutrient interplay across an age-chronosequence of tea plantations within a hilly red soil farm of subtropical China. Soil Sci Plant Nutr 60:448–459. doi: 10.1080/00380768.2014.912950 CrossRefGoogle Scholar
  15. Flaten TP (2002) Aluminium in tea - concentrations, speciation and bioavailability. Coord Chem Rev 228:385–395. doi: 10.1016/s0010-8545(02)00036-x CrossRefGoogle Scholar
  16. Fung KF, Wong MH (2002) Effects of soil pH on the uptake of Al, F and other elements by tea plants. J Sci Food Agric 82:146–152. doi: 10.1002/jsfa.1007 CrossRefGoogle Scholar
  17. Galloway JN, Zhao DW, Xiong JL, Likens GE (1987) Acid-Rain - China, United-States, and a remote area. Science 236:1559–1562. doi: 10.1126/science.236.4808.1559 CrossRefPubMedGoogle Scholar
  18. Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141. doi: 10.1007/s11104-005-3697-y CrossRefGoogle Scholar
  19. Gottlein A, Heim A, Matzner E (1999) Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant Soil 211:41–49. doi: 10.1023/a:1004332916188 CrossRefGoogle Scholar
  20. Han W, Kemmitt SJ, Brookes PC (2007) Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biol Biochem 39:1468–1478. doi: 10.1016/j.soilbio.2006.12.029 CrossRefGoogle Scholar
  21. Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796. doi: 10.1111/j.1461-0248.2011.01641.x CrossRefPubMedGoogle Scholar
  22. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi: 10.1023/a:1013351617532 CrossRefGoogle Scholar
  23. Karimi R, Folt CL (2006) Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecol Lett 9:1273–1283. doi: 10.1111/j.1461-0248.2006.00979.x CrossRefPubMedGoogle Scholar
  24. Ladanai S, Agren GI, Olsson BA (2010) Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13:302–316. doi: 10.1007/s10021-010-9319-4 CrossRefGoogle Scholar
  25. Larssen T, Carmichael GR (2000) Acid rain and acidification in China: the importance of base cation deposition. Environ Pollut 110:89–102. doi: 10.1016/s0269-7491(99)00279-1 CrossRefPubMedGoogle Scholar
  26. Larssen T, Lydersen E, Dagang T, Yi H, Jixi G, Haiying L, Lei D, Seip HM, Vogt RD, Mulder J, Min S, Yanhui W, He S, Xiaoshan Z, Solberg S, Aas W, Økland T, Eilertsen O, Angell V, Quanru L (2006a) Acid rain in China. Environ Sci Technol 40:418–425CrossRefPubMedGoogle Scholar
  27. Larssen T, Lydersen E, Tang DG, He Y, Gao JX, Liu HY, Duan L, Seip HM, Vogt RD, Mulder J, Shao M, Wang YH, Shang H, Zhang XS, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Liu QR, Zhao DW, Xiang RJ, Xiao JS, Luo JH (2006b) Acid rain in China. Environ Sci Technol 40:418–425. doi: 10.1021/es0626133 CrossRefPubMedGoogle Scholar
  28. Larssen T, Duan L, Mulder J (2011) Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China: Implications for acidification. Environ Sci Technol 45:1192–1198CrossRefPubMedGoogle Scholar
  29. Li A, Guo D, Wang Z, Liu H (2010) Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Funct Ecol 24:224–232. doi: 10.1111/j.1365-2435.2009.01603.x CrossRefGoogle Scholar
  30. Li J, Hu X, Duan X, Huang Y, Liu Y, Chen F (2012) Effects of planting year on soil and plant nutrients in hilly tea gardens. Acta Agric Univers Jiangxi 34:1186–1192Google Scholar
  31. Liu G, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol 188:543–553. doi: 10.1111/j.1469-8137.2010.03388.x CrossRefPubMedGoogle Scholar
  32. Liu Y, Hu X-F, Chen F-S, Pu-ci Y (2013) Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests. Chi J Appl Ecol 24:1501–1508Google Scholar
  33. Liu L, Zhang X, Wang S, Zhang W, Lu X (2016) Bulk sulfur (S) deposition in China. Atmos Environ 135:41–49. doi: 10.1016/j.atmosenv.2016.04.003 CrossRefGoogle Scholar
  34. Metali F, Abu Salim K, Tennakoon K, Burslem DFRP (2015) Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements. New Phytol 205:280–292. doi: 10.1111/nph.12987 CrossRefPubMedGoogle Scholar
  35. Mommer L, Kirkegaard J, van Ruijven J (2016) Root-root interactions: towards a rhizosphere framework. Trends Plant Sci 21:209–217. doi: 10.1016/j.tplants.2016.01.009 CrossRefPubMedGoogle Scholar
  36. Newman GS, Hart SC (2006) Nutrient covariance between forest foliage and fine roots. For Ecol Manag 236:136–141. doi: 10.1016/j.foreco.2006.10.001 CrossRefGoogle Scholar
  37. Niklas KJ (2006) Plant Allometry, Leaf Nitrogen and Phosphorus Stoichiometry, and Interspecific Trends in Annual Growth Rates. Ann Bot 97:155–163. doi: 10.1093/aob/mcj021 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pandey J, Pandey U, Singh AV (2014) The skewed N: P stoichiometry resulting from changing atmospheric deposition chemistry drives the pattern of ecological nutrient limitation in the Ganges. Curr Sci 107:956–958Google Scholar
  39. Qiu Q, Wu J, Liang G, Liu J, Chu G, Zhou G, Zhang D (2015) Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China. Environ Monit Assess 187. doi:  10.1007/s10661-015-4492-8
  40. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  41. Roivainen P, Makkonen S, Holopainen T, Juutilainen J (2012) Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest. Radiat Environ Biophys 51:69–78. doi: 10.1007/s00411-011-0393-6 CrossRefPubMedGoogle Scholar
  42. Ruan J, Ma L, Shi Y (2006) Aluminium in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization. Environ Geochem Health 28:519–528. doi: 10.1007/s10653-006-9047-z CrossRefPubMedGoogle Scholar
  43. Soon YK (1993) Fractionation of extractable aluminum in acid soils - a review and a proposed proceduer. Commun Soil Sci Plant Anal 24:1683–1708. doi: 10.1080/00103629309368908 CrossRefGoogle Scholar
  44. SPSS I (2007) SPSS for Windows (16.0). SPSS Inc, ChicagoGoogle Scholar
  45. Tsuji M, Kuboi T, Konishi S (1994) Stimulatory effects of aluminum on the growth of cultured roots of tea. Soil Sci Plant Nutr 40:471–476CrossRefGoogle Scholar
  46. Wang Y, Li B, Zhang M (2011) Effect of atmospheric deposition on heavy metal accumulation in tea leaves. Sci Technol Rev 29:55–59. doi: 10.3981/j.issn.1000-7857.2011.21.009 Google Scholar
  47. Xue D, Yao H, Huang C (2005) Study on soil microbial properties and enzyme activities in tea gardens. J Soil Water Conserv 19:84–87Google Scholar
  48. Yang T, Li H, Xiaofei H, Li LJ, Hu J, Rong L, Ze-Yuan D (2014) Effects of fertilizing with N, P, Se, and Zn on regulating the element and functional component contents and antioxidant activity of tea leaves planted in red soil. J Agric Food Chem 62:3823–3830. doi: 10.1021/jf5004286 CrossRefPubMedGoogle Scholar
  49. Zhang J-E, Yu J, Ouyang Y, Xu H (2014) Impact of simulated acid rain on trace metals and aluminum leaching in Latosol from Guangdong province, China. Soil Sedim Contamin 23:725–735. doi: 10.1080/15320383.2014.866934 CrossRefGoogle Scholar
  50. Zhao N, Yu G, He N, Wang Q, Guo D, Zhang X, Wang R, Xu Z, Jiao C, Li N, Jia Y (2016) Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr 25:359–367. doi: 10.1111/geb.12427 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Xiao-Fei Hu
    • 1
    • 2
  • Fu-Sheng Chen
    • 3
  • Michael L. Wine
    • 4
  • Xiang-Min Fang
    • 1
  1. 1.Jiangxi Provincial Key Laboratory of Silviculture, College of ForestryJiangxi Agricultural UniversityNanchangChina
  2. 2.Management School of Nanchang UniversityNanchangChina
  3. 3.Jiangxi Agricultural UniversityNanchangChina
  4. 4.Earth and Environmental ScienceNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations