Plant and Soil

, Volume 417, Issue 1–2, pp 243–259 | Cite as

Improvement of coarse root detection using time and frequency induced polarization: from laboratory to field experiments

  • Benjamin Mary
  • Feras Abdulsamad
  • Ginette Saracco
  • Laurent Peyras
  • Michel VennetierEmail author
  • Patrice Mériaux
  • Christian Camerlynck
Regular Article



Over the last decade the induced polarization (IP) method has emerged as a promising tool for subsurface investigation with growing interest for biogeophysics.


In this work, in addition to electrical resistivity methods, IP was tested experimentally as a proxy for identifying and discriminating tree coarse roots from the surrounding soil. This study permitted to show the effect of polarization at low frequencies (<25 Hz) using spectral (SIP) and temporal (TDIP) approaches both in laboratory and in the field.


(i) the resistivity of woody roots samples was higher than that of a silty soil; (ii) roots polarized at frequencies lower than that of the soil; (iii) the effects of polarization increased with the volume of the buried roots (iv) the direction of roots relatively to current lines influenced the amplitude of IP response. Applying the SIP method in-situ in semi-controlled conditions gave promising results since phase variations around 1 Hz frequency were correlated with buried root position.


SIP and TDIP approaches in the lab demonstrated their potential efficiency for detecting coarse roots. This was further demonstrated in the field with SIP. Using maps at several frequencies was useful as variable environmental conditions may change the polarization relaxation frequency and amplitude. Additional works in semi-controlled conditions are necessary to study the dependence of IP response on different parameters of more complex and larger root systems.


Coarse root detection Electrical measurements Induced polarization Wood properties Earth dike materials 



This research is a contribution to the Labex OTMed (No ANR-11-LABX-0061) funded by the (Investissements d’Avenir) program of the French National Research Agency through the A*MIDEX project (No ANR-11-IDEX-0001-02). It was also supported by IRSTEA. We thank the editor and two anonymous reviewers for their constructive comments, which were of great help in improving the manuscript.


  1. Abdulsamad F, Florsch N, Schmutz M, Camerlynck C (2016) Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements. J Appl Geophys. doi: 10.1016/j.jappgeo.2016.01.001 Google Scholar
  2. Allred B, Daniels JJ, Ehsani MR (2008) Handbook of agricultural Geophysics. CRC PressGoogle Scholar
  3. Amato M, Basso B, Celano G, Bitella G, Morelli G, Rossi R (2008) In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree Physiol 28:1441–1448. doi: 10.1093/treephys/28.10.1441 PubMedGoogle Scholar
  4. Amato M, Bitella G, Rossi R, Gómez JA, Lovelli S, Gomes JJF (2009) Multi-electrode 3D resistivity imaging of alfalfa root zone. Eur J Agron 31:213–222. doi: 10.1016/j.eja.2009.08.005 CrossRefGoogle Scholar
  5. Barton CVM, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24:1323–1331. doi: 10.1093/treephys/24.12.1323 CrossRefPubMedGoogle Scholar
  6. Beff L, Günther T, Vandoorne B, Couvreur V, Javaux M (2013) Three-dimensional monitoring of soil water content in a maize field using electrical resistivity tomography. Hydrol Earth Syst Sci 17:595–609. doi: 10.5194/hess-17-595-2013 CrossRefGoogle Scholar
  7. Bodner G, Leitner D, Kaul H-P (2014) Coarse and fine root plants affect pore size distributions differently. Plant Soil 380:133–151. doi: 10.1007/s11104-014-2079-8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cassiani G, Boaga J, Rossi M, Putti M, Fadda G, Majone B, Bellin A (2015) Soil–plant interaction monitoring: small scale example of an apple orchard in Trentino. North-Eastern Italy Sci Total Environ. doi: 10.1016/j.scitotenv.2015.03.113 PubMedGoogle Scholar
  9. Chapman DL (1913) LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Philos. Mag J Sci 25:475–481CrossRefGoogle Scholar
  10. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics J Chem Phys 9:341–351Google Scholar
  11. Corcoran, M.K., Gray, D.H., Biedenharn, D.S., Little, C.D., Leech, J.R., Pinkard, F., Bailey, P., Lee, L.T., (2010). Literature review-vegetation on levees. DTIC DocumentCrossRefGoogle Scholar
  12. Cosenza P, Ghorbani A, Florsch N, Revil A (2007) Effects of drying on the low-frequency electrical properties of Tournemire argillites. Pure Appl Geophys 164:2043–2066CrossRefGoogle Scholar
  13. Dahlin, T., Dalsegg, E., Sandström, T., (2013). Data Quality Quantification for Time Domain IP Data Acquired along a Planned Tunnel near Oslo, Norway, in: Procs. Near Surface Geoscience 2013Google Scholar
  14. Duckworth K, Brown R (1996) A program for Fourier series synthesis of induced polarization waveforms. Comput Geosci 22:1133–1136CrossRefGoogle Scholar
  15. Dupuy L, Fourcaud T, Stokes A (2005) A numerical investigation into factors affecting the anchorage of roots in tension. Eur J Soil Sci 56:319–327CrossRefGoogle Scholar
  16. Edwards L (1977) A modified pseudosection for resistivity and ip. Geophysics 42:1020–1036. doi: 10.1190/1.1440762 CrossRefGoogle Scholar
  17. Florsch N, Llubes M, Téreygeol F, Ghorbani A, Roblet P (2011) Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel-Minier site. J Archaeol Sci 38:438–451. doi: 10.1016/j.jas.2010.09.027 CrossRefGoogle Scholar
  18. Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37:1000–1024. doi: 10.1139/t00-030 CrossRefGoogle Scholar
  19. Garré S, Javaux M, Vanderborght J, Pagès L, Vereecken H (2011) Three-dimensional electrical resistivity tomography to monitor root zone water dynamics. Vadose Zone J 10:412–424. doi: 10.2136/vzj2010.0079 CrossRefGoogle Scholar
  20. Ghestem M, Veylon G, Bernard A, Vanel Q, Stokes A (2014) Influence of plant root system morphology and architectural traits on soil shear resistance. Plant Soil 377:43–61. doi: 10.1007/s11104-012-1572-1 CrossRefGoogle Scholar
  21. Ghorbani A, Camerlynck C, Florsch N, Cosenza P, Revil A (2007) Bayesian inference of the Cole–Cole parameters from time-and frequency-domain induced polarization. Geophys Prospect 55:589–605CrossRefGoogle Scholar
  22. Ghorbani A, Cosenza P, Revil A, Zamora M, Schmutz M, Florsch N, Jougnot D (2009) Non-invasive monitoring of water content and textural changes in clay-rocks using spectral induced polarization: a laboratory investigation. Appl Clay Sci 43:493–502. doi: 10.1016/j.clay.2008.12.007 CrossRefGoogle Scholar
  23. Gouy M (1910) Sur la constitution de la charge electrique a la surface d’un electrolyte. J Phys Theor Appl 9:457–468CrossRefGoogle Scholar
  24. Green SR, Kirkham MB, Clothier BE (2006) Root uptake and transpiration: from measurements and models to sustainable irrigation. Agric Water Manag 86:165–176CrossRefGoogle Scholar
  25. Guo L, Lin H, Fan B, Cui X, Chen J (2013) Impact of root water content on root biomass estimation using ground penetrating radar: evidence from forward simulations and field controlled experiments. Plant Soil 371:503–520. doi: 10.1007/s11104-013-1710-4 CrossRefGoogle Scholar
  26. Gurin G, Tarasov A, Ilyin Y, Titov K (2013) Time domain spectral induced polarization of disseminated electronic conductors: laboratory data analysis through the Debye decomposition approach. J Appl Geophys 98:44–53. doi: 10.1016/j.jappgeo.2013.07.008 CrossRefGoogle Scholar
  27. Hagrey SA et al (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58:839–854. doi: 10.1093/jxb/erl237 CrossRefGoogle Scholar
  28. Hönig M, Tezkan B (2007) 1D and 2D Cole-Cole-inversion of time-domain induced-polarization data. Geoph Prosp 55(1):117–133CrossRefGoogle Scholar
  29. Hördt A, Blaschek R, Kemna A, Zisser N (2007) Hydraulic conductivity estimation from induced polarisation data at the field scale—the Krauthausen case history. J Appl Geophys 62:33–46CrossRefGoogle Scholar
  30. Johnson IM (1984) Spectral induced polarization parameters as determined through time-domain measurements. Geophysics 49:1993–2003CrossRefGoogle Scholar
  31. Kemna A, Binley A, Ramirez A, Daily W (2000) Complex resistivity tomography for environmental applications. Chem Eng J 77(1):11–18CrossRefGoogle Scholar
  32. Loke M, Chambers J, Ogilvy R (2006) Inversion of 2D spectral induced polarization imaging data. Geophys Prospect 54:287–301CrossRefGoogle Scholar
  33. Loperte A, Satriani A, Lazzari L, Amato M, Celano G, Lapenna V, Morelli G (2006) 2D and 3D high resolution geoelectrical tomography for non-destructive determination of the spatial variability of plant root distribution: laboratory experiments and field measurements. Geophys Res Abstr Wien 8:6749Google Scholar
  34. Martin T (2012) Complex resistivity measurements on oak. Eur J Wood Wood Prod 70:45–53. doi: 10.1007/s00107-010-0493-z CrossRefGoogle Scholar
  35. Martin, T., Günther, T., (2013). Complex resistivity tomography (CRT) for fungus detection on standing oak trees. Eur J Res doi: 10.1007/s10342-013-0711-4
  36. Mary B (2015) Développement de l’imagerie des systèmes racinaires dans les ouvrages hydrauliques en remblai par tomographie électrique et acoustique. PHD thesis, Irstea, OTMED, Aix-Marseille Université, Sciences de l’environnement - Géosciences, p 250Google Scholar
  37. Mary B, Saracco G, Peyras L, Vennetier M, Mériaux P, Camerlynck C (2016) Mapping tree root system in dikes using induced polarization: focus on the influence of soil water content. J Appl Geophys 135:387-396. doi: 10.1016/j.jappgeo.2016.05.005
  38. Niemz P (1993) Physik des Holzes und der HolzwerkstoffeGoogle Scholar
  39. Okay G (2011) Caractérisation des hétérogénéités texturales et hydriques des géomatériaux argileux par la méthode de Polarisation Provoquée: application à l’EDZ de la station expérimentale de Tournemire (Thèse de doctorat). Université Pierre et Marie Curie, Paris, FranceGoogle Scholar
  40. Olhoeft G (1985) Low-frequency electrical properties. Geophysics 50:2492–2503CrossRefGoogle Scholar
  41. Palacky G (1988) Resistivity characteristics of geologic targets. Electromagn Methods Appl Geophys 1:53–129Google Scholar
  42. Pelton W, Ward S, Hallof P, Sill W, Nelson PH (1978) Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43:588–609CrossRefGoogle Scholar
  43. Schleifer N, Weller A, Schneider S, Junge A (2002) Investigation of a bronze age plankway by spectral induced polarization. Archaeol Prospect 9:243–253. doi: 10.1002/arp.194 CrossRefGoogle Scholar
  44. Schlumberger C (1920) Etude sur la prospection electrique du sous-sol. Gauthier-VillarsGoogle Scholar
  45. Schweingruber FH, Bosshard W (1982) Mikroskopische Holzanatomie: Formenspektren mitteleuropäher Stamm-und Zweig hölzer zur Bestimmung von rezentem subfossilemGoogle Scholar
  46. Scott JB, Barker RD (2003) Determining pore-throat size in Permo-Triassic sandstones from low-frequency electrical spectroscopy. Geophys Res Lett 30Google Scholar
  47. Serre D, Peyras L, Tourment R, Diab Y (2008) Levee performance assessment methods integrated in a GIS to support planning maintenance actions. J Infrastruct Syst 14:201–213CrossRefGoogle Scholar
  48. Slater L, Lesmes DP (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour Res 38:31–31CrossRefGoogle Scholar
  49. Stern O (1924) Zur theorie der elektrolytischen doppelschicht. Z Für Elektrochem Angew Phys Chem 30:508–516Google Scholar
  50. Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle RC (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30. doi: 10.1007/s11104-009-0159-y CrossRefGoogle Scholar
  51. Thierry, B., Weller, A., Schleifer, N., Westphal, T., (2001). Polarisation effects of wood. Ext Abst Für Tagungsband Zur EEGS P44-45 BirmGoogle Scholar
  52. Vanderborght J, Huisman JA, Kruk J, Vereecken H (2013) Geophysical methods for field-scale imaging of root zone properties and processes. Soil–Water–Root Process Adv Tomogr Imaging:247–282Google Scholar
  53. Vanhala L, Eeva M, Lapinjoki S, Hiltunen R, Oksman-Caldentey K-M (1998) Effect of growth regulators on transformed root cultures of Hyoscyamus muticus. J Plant Physiol 153:475–481CrossRefGoogle Scholar
  54. Vennetier M, Mériaux P, Zanetti C (2015a) Gestion de la végétation des ouvrages hydrauliques en remblai : guide technique, Irstea. ed. Cadère éditeur, Aix en ProvenceGoogle Scholar
  55. Vennetier M, Zanetti C, Meriaux P, Mary B (2015b) Tree root architecture: new insights from a comprehensive study on dikes. Plant Soil 387:81–101. doi: 10.1007/s11104-014-2272-9 CrossRefGoogle Scholar
  56. Veylon G, Ghestem M, Stokes A, Bernard A (2015) Quantification of mechanical and hydric components of soil reinforcement by plant roots. Can Geotech J 52:1839–1849. doi: 10.1139/cgj-2014-0090 CrossRefGoogle Scholar
  57. Weller A, Nordsiek S, Bauerochse A (2006) Spectral induced polarisation – a Geophysical method for archaeological prospection in Peatlands. J Wetl Archaeol 6:105–125. doi: 10.1179/jwa.2006.6.1.105 CrossRefGoogle Scholar
  58. Wu Y, Guo L, Cui X, Chen J, Cao X, Lin H (2014) Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture. Plant Soil 383:155–172. doi: 10.1007/s11104-014-2139-0 CrossRefGoogle Scholar
  59. Yuval ODW (1997) Computation of Cole-Cole parameters from IP data. Geophysics 62(2):436–448CrossRefGoogle Scholar
  60. Zanetti C, Vennetier M, Mériaux P, Provansal M (2015) Plasticity of tree root system structure in contrasting soil materials and environmental conditions. Plant Soil 387:21–35. doi: 10.1007/s11104-014-2253-z CrossRefGoogle Scholar
  61. Zanetti C, Vennetier M, Mériaux P, Royet P, Provansal M (2011a) Managing woody vegetation on earth dikes: risks assessment and maintenance solutions. Procedia Environ Sci 9:196–200. doi: 10.1016/j.proenv.2011.11.030 CrossRefGoogle Scholar
  62. Zanetti C, Weller A, Vennetier M, Mériaux P (2011b) Detection of buried tree root samples by using geoelectrical measurements: a laboratory experiment. Plant Soil 339:273–283. doi: 10.1007/s11104-010-0574-0 CrossRefGoogle Scholar
  63. Zenone T, Morelli G, Teobaldelli M, Fischanger F, Matteucci M, Sordini M, Armani A, Ferrè C, Chiti T, Seufert G (2008) Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Funct Plant Biol 35:1047–1058CrossRefGoogle Scholar
  64. Zimmermann E, Kemna A, Berwix J, Glaas W, Münch H, Huisman J (2008a) A high-accuracy impedance spectrometer for measuring sediments with low polarizability. Meas Sci Technol 19:105603CrossRefGoogle Scholar
  65. Zimmermann E, Kemna A, Berwix J, Glaas W, Vereecken H (2008b) EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments. Meas Sci Technol 19:94010CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Benjamin Mary
    • 1
    • 2
  • Feras Abdulsamad
    • 3
  • Ginette Saracco
    • 2
    • 4
  • Laurent Peyras
    • 1
  • Michel Vennetier
    • 1
    • 4
    Email author
  • Patrice Mériaux
    • 1
  • Christian Camerlynck
    • 3
  1. 1.Irstea, unité de recherche RECOVERAix-en-Provence Cedex 5France
  2. 2.CNRS – UMR7330, CEREGE, AMU, Equipe Modelisation, Europole de l’ArboisAix-en-Provence-cedex 4France
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, UMR 7619 METISParisFrance
  4. 4.ECCOREV FR 3098, Université Aix-MarseilleMarseilleFrance

Personalised recommendations