Plant and Soil

, Volume 417, Issue 1–2, pp 197–216 | Cite as

Comparison of plant litter and peat decomposition changes with permafrost thaw in a subarctic peatland

Regular Article

Abstract

Background and aims

Organic matter decomposition in response to thawing permafrost has critical implications for carbon release. This study examined how thaw induced plant community and environmental changes influenced litter and peat decomposition in a subarctic peatland.

Methods

We conducted laboratory incubations under current site pre-thaw (dry and large oxic peat layer) and thawed (wet and small oxic peat layer) conditions, and mimiced pond thaw conditions (water saturated and anoxic) at 4 and 22 °C. Carbon dioxide (CO2) and methane (CH4) releases from ground surface plant litter and top 1 m peat samples at permafrost area (Palsa) and wet thawed lawn (WL) were quantified under current site conditions. Dissolved organic carbon (DOC) released from litter was additionally quantified under pond thaw conditions.

Results

Plant litter mass significantly increased from Palsa to WL. Under current site conditions, litter in WL had significantly higher CO2 and CH4 production rates than litter in Palsa. Pond thaw conditions changed litter carbon loss partitioning into lower CO2 but higher DOC and CH4 production, and increased total carbon release. Whole peat decomposition was restricted from Palsa to WL with thaw. Estimated growing season gas carbon loss (CO2 and CH4) in WL was greater than that in Palsa due to significantly increased litter carbon loss after thaw.

Conclusions

Changes in organic matter decomposition, especially litter decomposition, enlarged carbon losses from this subarctic peatland with permafrost thaw.

Keywords

Decomposition CO2 CH4 DOC production Litter Peat Permafrost thaw Subarctic peatland 

Supplementary material

11104_2017_3252_MOESM1_ESM.pdf (148 kb)
Online Resource 1Figure 1 Aboveground biomass composition of plant functional types in Palsa and WL. (PDF 148 kb)
11104_2017_3252_MOESM2_ESM.pdf (81 kb)
Online Resource 2Table 1 Characteristics of incubated organic matter. (PDF 81 kb)
11104_2017_3252_MOESM3_ESM.pdf (194 kb)
Online Resource 3Figure 2 Peat temperature variations at 5, 10, 20, 50 and 100 (90) cm in WL and Palsa in growing season 2013 and 2014. (PDF 194 kb)

References

  1. Alewell C, Giesler R, Klaminder J, Leifeld J, Rollog M (2011) Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences 8:1769–1778CrossRefGoogle Scholar
  2. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340CrossRefGoogle Scholar
  3. Baldrian P, Merhautova V, Petrankova M, Cajthaml T, Snajdr J (2010) Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl Soil Ecol 46:177–182CrossRefGoogle Scholar
  4. Bengtson P, Bengtsson G (2007) Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecol Lett 10:783–790CrossRefPubMedGoogle Scholar
  5. Bhiry N, Robert EC (2006) Reconstruction of changes in vegetation and trophic conditions of a palsa in a permafrost peatland, subarctic Quebec, Canada. Ecoscience 13:56–65CrossRefGoogle Scholar
  6. Bhiry N, Delwaide A, Allard M, Bégin Y, Filion L, Lavoie M, Nozais C, Payette S, Pienitz R, Saulnier-Talbot É, Vincent WF (2011) Environmental change in the great Whale River region, Hudson Bay: five decades of multidisciplinary research by Centre d'études Nordiques (CEN). Ecoscience 18:182–203CrossRefGoogle Scholar
  7. Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351CrossRefGoogle Scholar
  8. Bracho R, Natali S, Pegoraro E, Crummer KG, Schädel C, Celis G, Hale L, Wu L, Yin H, Tiedje JM, Konstantinidis KT, Luo Y, Zhou J, Schuur EAG (2016) Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biol Biochem 97:1–14CrossRefGoogle Scholar
  9. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346CrossRefPubMedGoogle Scholar
  10. Bubier JL, Frolking S, Crill PM, Linder E (1999) Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J Geophys Res-Atmos 104:27683–27692CrossRefGoogle Scholar
  11. Camill P (1999) Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming. Canadian Journal of Botany-Revue Canadienne De Botanique 77:721–733CrossRefGoogle Scholar
  12. Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim Chang 68:135–152CrossRefGoogle Scholar
  13. Camill P, Lynch JA, Clark JS, Adams JB, Jordan B (2001) Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4:461–478CrossRefGoogle Scholar
  14. Chow AT, Tanji KK, Gao SD, Dahlgren RA (2006) Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biol Biochem 38:477–488CrossRefGoogle Scholar
  15. Clare JT, Johnson D, Artz RRE (2009) Litter type, but not plant cover, regulates initial litter decomposition and fungal community structure in a recolonising cutover peatland. Soil Biol Biochem 41:651–655CrossRefGoogle Scholar
  16. Clymo RS (1984) The limits to peat bog growth. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 303:605–654CrossRefGoogle Scholar
  17. Conant RT, Steinweg JM, Haddix ML, Paul EA, Plante AF, Six J (2008) Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89:2384–2391CrossRefPubMedGoogle Scholar
  18. Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton AJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–799CrossRefGoogle Scholar
  19. Cusack DF (2013) Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient. Soil Biol Biochem 57:192–203CrossRefGoogle Scholar
  20. Dijkstra FA, Cheng W (2007) Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biol Biochem 39:2264–2274CrossRefGoogle Scholar
  21. Ding J, Chen L, Zhang B, Liu L, Yang G, Fang K, Chen Y, Li F, Kou D, Ji C, Luo Y, Yang Y (2016) Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems. Glob Biogeochem Cycles 30:1310–1323CrossRefGoogle Scholar
  22. Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37:2171–2179CrossRefGoogle Scholar
  23. Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828CrossRefGoogle Scholar
  24. Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619CrossRefGoogle Scholar
  25. Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG (2015) Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc Natl Acad Sci 112:13946–13951CrossRefPubMedPubMedCentralGoogle Scholar
  26. Elberling B, Michelsen A, Schadel C, Schuur EAG, Christiansen HH, Berg L, Tamstorf MP, Sigsgaard C (2013) Long-term CO2 production following permafrost thaw. Nature Clim Change 3:890–894CrossRefGoogle Scholar
  27. Erhagen B, Öquist M, Sparrman T, Haei M, Ilstedt U, Hedenström M, Schleucher J, Nilsson MB (2013) Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Glob Chang Biol 19:3858–3871CrossRefPubMedGoogle Scholar
  28. Euskirchen ES, Edgar CW, Turetsky MR, Waldrop MP, Harden JW (2014) Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost. Journal of Geophysical Research: Biogeosciences 119:1576–1595Google Scholar
  29. Fang CM, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59CrossRefPubMedGoogle Scholar
  30. Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326CrossRefGoogle Scholar
  31. Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES (2016) Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. J Ecol 104:1542–1554CrossRefGoogle Scholar
  32. Frolking S, Roulet NT, Moore TR, Richard PJH, Lavoie M, Muller SD (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479–498CrossRefGoogle Scholar
  33. Frolking S, Roulet NT, Moore TR, Lafleur PM, Bubier JL, Crill PM (2002) Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario. Canada Global Biogeochem Cycles 16:1030Google Scholar
  34. Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenko S, Romanovsky V, Wickland KP, French N, Waldrop M, Bourgeau-Chavez L, Striegl RG (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res 116. doi:10.1029/2010JG001507
  35. Herndon EM, Mann BF, Roy Chowdhury T, Yang Z, Wullschleger SD, Graham D, Liang L, Gu B (2015) Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska. Journal of Geophysical Research: Biogeosciences 120:2345–2359Google Scholar
  36. Hicks Pries CE, van Logtestijn RSP, Schuur EAG, Natali SM, Cornelissen JHC, Aerts R, Dorrepaal E (2015) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Glob Chang Biol 21:4508–4519CrossRefPubMedGoogle Scholar
  37. Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522CrossRefGoogle Scholar
  38. Hobbie SE, Chapin FS (1996) Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35:327–338CrossRefGoogle Scholar
  39. Hodgkins, S. B., M. M. Tfaily, C. K. McCalley, T. A. Logan, P. M. Crill, S. R. Saleska, V. I. Rich, and J. P. Chanton (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences:doi:10.1073/pnas.1314641111
  40. Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O'Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593CrossRefGoogle Scholar
  41. IPCC (2013) Near-term climate change: projections and predictability. In: Climate change 2013: the physical science basis. Cambridge University Press, Cambridge and New York, pp 953–1028Google Scholar
  42. Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003a) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291CrossRefGoogle Scholar
  43. Kalbitz K, Schwesig D, Schmerwitz J, Kaiser K, Haumaier L, Glaser B, Ellerbrock R, Leinweber P (2003b) Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem 35:1129–1142CrossRefGoogle Scholar
  44. Kawahigashi M, Kaiser K, Kalbitz K, Rodionov A, Guggenberger G (2004) Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Glob Chang Biol 10:1576–1586CrossRefGoogle Scholar
  45. Kim Y, Ullah S, Moore T, Roulet N (2014) Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter: the role of flooding, oxygen concentration, and temperature. Biogeochemistry 118:35–48CrossRefGoogle Scholar
  46. Klein ES, Yu Z, Booth RK (2013) Recent increase in peatland carbon accumulation in a thermokarst lake basin in southwestern Alaska. Palaeogeogr Palaeoclimatol Palaeoecol 392:186–195CrossRefGoogle Scholar
  47. Krab EJ, Berg MP, Aerts R, van Logtestijn RSP, Cornelissen JHC (2013) Vascular plant litter input in subarctic peat bogs changes Collembola diets and decomposition patterns. Soil Biol Biochem 63:106–115CrossRefGoogle Scholar
  48. Krüger JP, Leifeld J, Alewell C (2014) Degradation changes stable carbon isotope depth profiles in palsa peatlands. Biogeosciences 11:3369–3380CrossRefGoogle Scholar
  49. Lamarre A, Garneau M, Asnong H (2012) Holocene paleohydrological reconstruction and carbon accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, Kuujjuarapik, subarctic Quebec, Canada. Rev Palaeobot Palynol 186:131–141CrossRefGoogle Scholar
  50. Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900CrossRefGoogle Scholar
  51. Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Glob Chang Biol 18:515–527CrossRefGoogle Scholar
  52. Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  53. Loisel J, Yu Z (2013) Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska. Journal of Geophysical Research: Biogeosciences 118:41–53Google Scholar
  54. Malhotra A. 2016. Relating Self-regulation with Ecosystem Structure and Function in Northern Peatlands. Pages: 43–52. Biogeosciences. McGill University. Montreal. Quebec. CanadaGoogle Scholar
  55. Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation, climatic changes and net carbon sequestration in a north-Scandinavian subarctic mire over 30 years. Glob Chang Biol 11:1895–1909Google Scholar
  56. Moore TR, Dalva M (2001) Some controls on the release of dissolved organic carbon by plant tissues and soils. Soil Sci 166:38–47CrossRefGoogle Scholar
  57. Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–963CrossRefGoogle Scholar
  58. Moore TR, Paré D, Boutin R (2008) Production of dissolved organic carbon in Canadian forest soils. Ecosystems 11:740–751CrossRefGoogle Scholar
  59. Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Glob Chang Biol 8:872–884CrossRefGoogle Scholar
  60. Nykanen, H., J. E. P. Heikkinen, L. Pirinen, K. Tiilikainen, and P. J. Martikainen. 2003. Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochemical Cycles 17:doi:10.1029/2002GB001861
  61. O’Donnell JA, Jorgenson MT, Harden JW, McGuire AD, Kanevskiy MZ, Wickland KP (2011) The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15:213–229CrossRefGoogle Scholar
  62. Olefeldt D, Roulet NT (2012) Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J Geophys Res Biogeosci 117. doi:10.1029/2011JG001819
  63. Osono T, Azuma J, Hirose D (2014) Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils. Plant Soil 376:411–421CrossRefGoogle Scholar
  64. Payette S (2004) Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett 31. doi:10.1029/2004GL020358
  65. Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149CrossRefGoogle Scholar
  66. Pries CEH, Schuur EAG, Crummer KG (2013) Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using Delta C-13 and Delta C-14. Glob Chang Biol 19:649–661CrossRefGoogle Scholar
  67. Prokushkin AS, Gleixner G, McDowell WH, Ruehlow S, Schulze ED (2007) Source- and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia. Glob Biogeochem Cycles 21. doi:10.1029/2007GB002938
  68. Qualls RG (2005) Biodegradability of dissolved organic from decomposing fractions of carbon leached leaf litter. Environmental Science & Technology 39:1616–1622CrossRefGoogle Scholar
  69. Quested HM, Callaghan TV, Cornelissen JHC, Press MC (2005) The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects. J Ecol 93:87–98CrossRefGoogle Scholar
  70. Roy Chowdhury T, Herndon EM, Phelps TJ, Elias DA, Gu B, Liang L, Wullschleger SD, Graham DE (2014) Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Glob Chang Biol 21. doi:10.1111/gcb.12762
  71. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394CrossRefPubMedGoogle Scholar
  72. Schreeg LA, Mack MC, Turner BL (2013) Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94:94–105CrossRefPubMedGoogle Scholar
  73. Schuur EAG, Crummer KG, Vogel JG, Mack MC (2007) Plant species composition and productivity following permafrost thaw and Thermokarst in Alaskan tundra. Ecosystems 10:280–292CrossRefGoogle Scholar
  74. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714CrossRefGoogle Scholar
  75. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559CrossRefPubMedGoogle Scholar
  76. Schuur EAG, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179CrossRefPubMedGoogle Scholar
  77. Seppälä M (2011) Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quat Res 75:366–370CrossRefGoogle Scholar
  78. Sharratt BS (1992) Growing-season trends in the Alaskan climate record. Arctic 45:124–127CrossRefGoogle Scholar
  79. Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497:615–618CrossRefPubMedGoogle Scholar
  80. Smith LC, Sheng YW, MacDonald GM (2007) A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafr Periglac Process 18:201–208CrossRefGoogle Scholar
  81. Steinweg JM, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92CrossRefGoogle Scholar
  82. Suseela V, Tharayil N, Xing BS, Dukes JS (2014) Warming alters potential enzyme activity but precipitation regulates chemical transformations in grass litter exposed to simulated climatic changes. Soil Biol Biochem 75:102–112CrossRefGoogle Scholar
  83. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23. doi:10.1029/2008GB003327
  84. Thormann MN, Bayley SE, Currah RS (2001) Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada. Canadian Journal of Botany-Revue Canadienne De Botanique 79:9–22CrossRefGoogle Scholar
  85. Torres PA, Abril AB, Bucher EH (2005) Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biol Biochem 37:49–54CrossRefGoogle Scholar
  86. Treat CC, Frolking S (2013) Carbon storage: a permafrost carbon bomb? Nature Clim. Change 3:865–867Google Scholar
  87. Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob Chang Biol 20:2674–2686CrossRefPubMedGoogle Scholar
  88. Turetsky MR (2004) Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past. Ecosystems 7:740–750CrossRefGoogle Scholar
  89. Turetsky MR, Wieder RK, Williams CJ, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:379–392CrossRefGoogle Scholar
  90. Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD (2007) The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes. Glob Chang Biol 13:1922–1934CrossRefGoogle Scholar
  91. Vallée S, Payette S (2007) Collapse of permafrost mounds along a subarctic river over the last 100 years (northern Québec). Geomorphology 90:162–170CrossRefGoogle Scholar
  92. Van Meeteren MJM, Tietema A, Westerveld JW (2007) Regulation of microbial carbon, nitrogen, and phosphorus transformations by temperature and moisture during decomposition of Calluna vulgaris litter. Biol Fertil Soils 44:103–112CrossRefGoogle Scholar
  93. Verhoeven JTA, Toth E (1995) Decomposition of Carex and Sphagnum litter in fens - effect of litter quality and inhibition by living tissue-homogenates. Soil Biol Biochem 27:271–275CrossRefGoogle Scholar
  94. Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob Chang Biol 16:2543–2554Google Scholar
  95. Wang ZH, Xu WY (2013) Decomposition-rate estimation of leaf litter in karst forests in China based on a mathematical model. Plant Soil 367:563–577CrossRefGoogle Scholar
  96. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37:4702–4708CrossRefGoogle Scholar
  97. Wickland KP, Neff JC, Aiken GR (2007) Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10:1323–1340CrossRefGoogle Scholar
  98. Wu DD, Li TT, Wan SQ (2013) Time and litter species composition affect litter-mixing effects on decomposition rates. Plant Soil 371:355–366CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of GeographyMcGill UniversityMontrealCanada
  2. 2.Centre des Études nordique (CEN)Université LavalQuébecCanada

Personalised recommendations